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ABSTRACT
Generative languagemodels (LMs) have become omnipresent across
data science. For a wide variety of tasks, inputs can be phrased as
natural language prompts for an LM, from whose output the solu-
tion can then be extracted. LM performance has consistently been
increasing with model size—but so has the monetary cost of query-
ing the ever larger models. Importantly, however, not all inputs are
equally hard: some require larger LMs for obtaining a satisfactory
solution, whereas for others smaller LMs suffice. Based on this fact,
we design a framework for cost-effective language model choice,
called “Fly-swat or cannon” (FORC). Given a set of inputs and a set of
candidate LMs, FORC judiciously assigns each input to an LM pre-
dicted to do well on the input according to a so-called meta-model,
aiming to achieve high overall performance at low cost. The cost–
performance tradeoff can be flexibly tuned by the user. Options
include, among others, maximizing total expected performance
(or the number of processed inputs) while staying within a given
cost budget, or minimizing total cost while processing all inputs.
We evaluate FORC on 14 datasets covering five natural language
tasks, using four candidate LMs of vastly different size and cost.
With FORC, we match the performance of the largest available LM
while achieving a cost reduction of 63%. Via our publicly available
library,1 researchers as well as practitioners can thus save large
amounts of money without sacrificing performance.
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1 INTRODUCTION
In recent years, a clear trend has emerged in natural language
processing and has subsequently spread across data science, char-
acterized by the increasing prominence of large language models
(LLMs). With the wide range of applications these models are ca-
pable of solving, many companies have contributed to this trend
1https://github.com/epfl-dlab/forc
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Figure 1: Overview of FORC, our framework for cost-effective
LM choice (details in Sec. 3.2). FORC consists of two steps:
(1) Predict cost and performance of each candidate LM on
each input query. Cost prediction is done using API pricing.
Performance prediction is done using a meta-model, trained
ahead of time (not shown) based on existing pairs of LM
queries and LM performance scores. (2) Assign each query to
atmost one LMusing an assignment strategy, aiming for high
total expected performance at low cost. Note that neither of
the two steps requires interacting with the LMs; queries are
fed to the assigned LMs only after the above steps.

by offering their own LLMs as a service. As a result, the landscape
of language processing is undergoing a dynamic shift, with an
increasing number of LLMs becoming available on the market.

As the size of LLMs continues to expand, their capabilities are
undergoing substantial enhancements, leading to notable improve-
ments across various language-related tasks [2, 5, 10, 21]. With the
growth in the number of parameters, their ability to understand
complex contexts has improved significantly. These bigger models
are better at picking up subtle changes in meaning, which helps
them give more relevant responses that fit the context. Moreover,
their increased size allows LLMs to generate text that is more coher-
ent and fluent, often resembling a human-like conversation. Finally,
as training datasets have been getting larger, the amount of knowl-
edge baked into LLM parameters has also broadened. This results
in improved factual accuracy and a better capability to provide
well-informed answers to a wider range of questions.

However, as the use of LLMs becomes more common, there is
a relevant concern about the rising costs of running them. State-
of-the-art language models (LMs) have hundreds of billions of pa-
rameters, so they need much computing power, leading to higher
expenses. For instance, running GPT-4 with an 8K-token context is
20 times more expensive than running GPT-3.5 on the same query
with a 4K-token context.2 Even though LLMs excel at handling

2https://openai.com/pricing
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complex language tasks, it is important to realize that not every sit-
uation needs their massive capabilities. Smaller LMs are generally
good at handling simpler language tasks and can be a more cost-
effective choice in cases where full LLM power is not necessary. For
example, on the 14 datasets that we examined with four different
language models, 33% of data samples are successfully solved both
by the biggest model and at least one of the smaller ones, while
11% are exclusively solved by one or more of the smaller models,
with the biggest model failing to answer correctly (cf. Sec. 4.2).

There is, thus, an opportunity to save cost by assigning each
input to the cheapest model able to solve it. The problem in realizing
this is how to predict ahead of time which models would correctly
solve which inputs—without actually running each LM on each
input, which would defeat the purpose. Chen et al. [3] proposed to
employ increasingly expensive LMs in a cascade until a satisfactory
result is obtained. This requires querying potentially multiple LMs
per input, something we set out to avoid in our approach.

Proposed solution. In this paper, we propose a novel approach
for saving LM costs by introducing “Fly-swat or cannon” (FORC), a
cost-aware framework that aims to assign each query from a query
set provided by the user to an appropriate LM, without the need to
run any of the LMs in the process. As shown in Fig. 1, FORC consists
of two steps: First, we predict the cost and performance of each
candidate LM on each input query. Cost prediction is done using the
LM provider’s API pricing; performance prediction is done using
a meta-model, a regression model trained ahead of time based on
existing pairs of LM queries and LM performance scores. Second,
we assign each query to at most one LM using an assignment
strategy, aiming for high total expected performance at low cost.
The cost–performance tradeoff can be tuned by choosing from
multiple strategies, each formalized as an optimization problem.

Advantages of FORC. As mentioned, FORC does not require any
interaction with the LMs when assigning queries to LMs. Rather,
each query is fed to its assigned LM only once FORC has terminated.
This opens up the possibility for greater budget savings in com-
parison to existing work. Next, the meta-model can be trained on
inputs from the union of a wide range of tasks and datasets, with-
out using any information about the task or dataset from which
an input was sourced. This way, at run time, FORC can handle
inputs without having to know which tasks they correspond to,
and as we show, FORC even works on inputs from tasks not seen
during meta-model training. Finally, compared to prior work, we
offer users more flexibility by providing them with more options
for cost and performance constraints and preferences.

Results. With the help of FORC, on 14 datasets spanning five
different task types, with four different LMs available, we are able to
reduce the cost of running the test dataset by 63%while maintaining
the same performance as the biggest LM. To facilitate the use of
FORC, we release the library as open-source code.1

Contributions. Briefly, our contributions are the following:
(1) We propose FORC, a cost-aware framework that automati-

cally assigns input queries to suitable LMs without the need
to run the LMs themselves in the process.

(2) We show that, by employing FORC, we are able to substan-
tially reduce the cost of running queries from different tasks,

while maintaining performance equal to the biggest LM avail-
able in our evaluation.

(3) We release a library for our framework, enabling users to run
the setting introduced here or to train different meta-models
tailored to their needs.

2 BACKGROUND AND RELATEDWORK
2.1 Language-model evaluation
Thorough assessment of LMs is a complex, but necessary task re-
quired for investigating and improving LM performance. With the
appearance of general purpose LMs, the need for an all-encom-
passing evaluation across different tasks to set a common standard
became apparent. There have been several efforts to simplify this
evaluation process. For instance, EleutherAI’s Language Model Har-
ness Evaluation framework [6], Huggingface’s Evaluate library [22],
and BIG-Bench [20] all offer convenient open-source repositories
that enable common evaluation and encourage collaborative ad-
vancements in the field.

Liang et al. [14] performed an exhaustive evaluation of a wide
set of LMs, termed Holistic Evaluation of Language Models (HELM).
They evaluated LMs of different sizes and capabilities, on various
datasets and tasks, from many performance aspects, such as accu-
racy, robustness, fairness, etc. This enabled a standardized view of
LM performance and a more reliable way to compare LMs.

Their results revealed that smaller LMs are able to solve some
tasks aswell as bigger LMs. This is an indicator that it is unnecessary
to use the biggest LM for each scenario. However, for more complex
tasks, as smaller LMsmostly fail to solve them, we should use bigger,
more capable LMs. These insights demonstrate that there is a need
for an automatized framework that would help us decide when to
use which LM. The results align with the findings from the Inverse
Scaling Prize competition [16]. Results from the two rounds of
competition [17, 18] revealed numerous tasks where larger LMs
perform worse than their smaller counterparts.

2.2 Inference-cost optimization
The majority of the cost for an LM product comes from inference,
not training [21]. Despite this, most existing research focuses on
minimizing training cost [10, 12, 21]. The high cost of executing
these models has driven the development of several inference cost
reduction techniques, such as quantization [1, 7, 23], distillation [8,
11, 19], and pruning [9, 13].

Zong et al. [24] include not only the training cost, but also an-
notation and inference cost in their empirical analysis. They focus
on one type of task only—text classification—and evaluate different
types of models, including non-neural models, an LLM, and smaller
language models. They give insights on which model would be the
best choice to train or use in a specific real-world scenario. Contrary
to this, our work focuses on LMs only, developing a framework that
automatically decides which LM is suitable for the tasks presented
under inference budget constraints.

Similarly to our work, Chen et al. [3] attempt to develop a frame-
work working with LMs only. They propose using LMs in cascade,
i.e., sending a query to available LMs sequentially until the reliabil-
ity of an answer is over some predefined threshold. Their approach
is specialized, meaning that parts of the framework are adapted
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Datset Task type Evaluation metric Train size Val size Test size

MMLU QA Exact match (EM) 434 47 86
RAFT Text classification Quasi-exact match 341 33 66
WikiFact QA Quasi-exact match 6069 669 1189
BoolQ QA Quasi-exact match 765 85 150
TruthfulQA QA Exact match (EM) 500 56 98
IMDB Sentiment analysis Quasi-exact match 765 85 150
Entity matching Reasoning Quasi-exact match 1071 119 210
Data imputation Reasoning Quasi-exact match 324 37 63
bAbI Reasoning Quasi-exact match 765 85 150
MATH Reasoning Equivalent 334 37 66
GSM8K Reasoning EM (up to an indicator) 765 85 150
LSAT Reasoning Quasi-exact match 353 39 69
LegalSupport Reasoning Quasi-exact match 765 85 150
CivilComments Toxicity detection Quasi-exact match 765 85 150

Total - - 14016 1547 2747

Table 1: Dataset specification.

specifically for one dataset during training. We, on the contrary,
focus on determining which LM to use prior to sending queries to
any of them. As we do not need to run any of the LMs to find the
best one, our approach is potentially a lot cheaper. In addition, we
tested it on a wider range of datasets, and we developped a general
framework without the need to retrain our meta-model for each
dataset separately.

3 METHOD
3.1 Problem setting

Tasks.We assume that the user has a set of queries they want to
solve using an LM. A lot of the commonly known tasks, such as
question-answering (QA), reasoning, and summarization, can be
written as textual queries, or prompts. For example, to transform a
summarization task into query format, one can construct an LM
prompt by adding an instruction such as “Summarize the above
article in one sentence” to the text to be summarized. Even simpler,
QA tasks can often be sent to the LM in their original form.

We work under the premise that all of the queries are evaluated
using the same, single metric. This way, we can be sure that the
evaluation process is straightforward and consistent across all tasks.

LMs.We consider a scenario where a user has access to 𝑘 LMs (𝑙𝑖
for 𝑖 = 1, . . . , 𝑘) that could potentially solve the set of𝑚 queries (𝑞 𝑗
for 𝑗 = 1, . . . , 𝑚). These LMs can be different in their capabilities
and size. Each LM is associated with its own cost. Costs can be
defined by the user, e.g., via the LMs’ API pricing.

Goal.Our goal is to use the pool of LMs to solve queries in a budget-
conscious way. We aim to assign each query 𝑞 𝑗 to at most one 𝑙𝑖
while respecting the user’s cost–performance requirements.

3.2 Framework setting
Our framework has three main components: meta-model, cost es-
timation, and assignment strategy. In Fig. 1, we illustrate the way
FORC works. First, the user needs to specify a set of queries they
want to solve. Then, using the meta-model, we predict the perfor-
mance 𝑝𝑖 𝑗 of each LM 𝑙𝑖 on each query 𝑞 𝑗 . At the same time, we
estimate the cost 𝑐𝑖 𝑗 of query 𝑞 𝑗 when using LM 𝑙𝑖 . Next, the user
needs to specify one of the assignment strategies described below,
and optional cost–performance requirements. The strategy will
then be used to assign each query to at most one of the LMs.

Meta-model and cost estimation. In order to know which LM
to use for a certain query, we first have to predict the performance
𝑝𝑖 𝑗 that LM 𝑙𝑖 would achieve on query 𝑞 𝑗 . To do so, we train a
meta-model. During training, we send a query 𝑞 𝑗 , plus a token
representing 𝑙𝑖 , as input to the meta-model, with target output 𝑝𝑖 𝑗 ,
which we assume is known for the training set. Our meta-model
is significantly smaller than all the LMs we are working with (cf.
Sec. 4.1) and it is trained on a diverse set of tasks, which allows it to
be suitable for general use (cf. Sec. 4.1). It is worth noting that one
can train a meta-model tailored to one’s own needs, with different
LMs in the pool, different datasets, or different performance metrics,
and plug it into the framework pipeline.

Along with the measure of performance, we have to estimate
the cost 𝑐𝑖 𝑗 of query 𝑞 𝑗 on each LM 𝑙𝑖 . The cost function can be
customized as needed. For implementation details, see Sec. 4.1.

Assignment strategies. Once we have a meta-model, we need to
decide how to assign each query to one of the possible LMs in the
pool, based on performance and cost estimates. We call the method
to do this an assignment strategy. There are two types of strategies:
(i) Cost-insensitive strategies: When applying cost-insensitive
strategies to the samples, we do not consider any constraints on
the budget or performance that the user might have set. Each data
sample is treated in the same way, independently of the whole
batch. We define the following cost-insensitive strategies:

(a) Single-model strategy: This strategy implies applying a single,
fixed LM from the available LMs to each sample.

(b) Performance-maximizing strategy: This strategy is based on
the outputs of the meta-model. For each sample, we choose the
LM that, according to the meta-model, is predicted to achieve the
highest performance.

(c) Thresholding strategy: This strategy is also based on the out-
puts of the meta-model. The user has to specify an acceptable-
performance threshold that defines whether a task is solved or
not. Outputs are binarized according to that threshold. A concrete
example where this strategy might be useful are tasks that are eval-
uated with binary metrics such as accuracy. The strategy works by
choosing the cheapest LM that solves the respective data sample.
In cases where none of the LMs solve the sample according to our
meta-model, we examine two possibilities: choosing the smallest
(and thus generally cheapest) LM, or choosing the biggest (and thus
generally most powerful) LM for that data sample.
(ii) Cost-sensitive strategies: Contrary to cost-insensitive strate-
gies, in this setting, we consider constraints, such as cost constraints,
set by the user for the batch of data samples in its entirety. This
transforms the problem into an optimization problem. We employ
the following cost-sensitive strategies:

(a) Cost-oriented ILP strategy: We formulate the problem of as-
signing an LM to each sample as an integer linear programming
(ILP) problem. We define 𝑀 as a set of LMs, 𝑆 as a set of samples
that need to be assigned to LMs, and 𝐶max as the maximum total
cost of processing all the samples. A binary variable 𝑥𝑖 𝑗 is intro-
duced to describe the assignment (or lack of it) between a data
sample 𝑞 𝑗 and an LM 𝑙𝑖 . If 𝑥𝑖 𝑗 = 1, sample 𝑞 𝑗 is assigned to the LM
𝑙𝑖 . A sample does not necessarily have to be assigned to any LM.
Assigning sample 𝑞 𝑗 to LM 𝑙𝑖 is associated with cost 𝑐𝑖 𝑗 and value
𝑝𝑖 𝑗 , where cost 𝑐𝑖 𝑗 corresponds to the estimated cost, and value
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text-ada-001 text-babbage-001 text-curie-001 text-davinci-002

Pricing ($ per 1k tokens) 0.0004 0.0005 0.002 0.02
Average output length 6.85 7.18 7.01 8.41

Table 2: Specifications of available LMs.

𝑝𝑖 𝑗 corresponds to the predicted performance when using LM 𝑙𝑖 to
solve the sample 𝑞 𝑗 . The goal is to maximize the performance on
the whole set of samples while respecting the cost constraint. This
problem is then formalized as an ILP as follows:

maximize
∑︁

𝑙𝑖 ∈𝑀,𝑞 𝑗 ∈𝑆
𝑝𝑖 𝑗 𝑥𝑖 𝑗 (1)

s.t.
∑︁
𝑙𝑖 ∈𝑀

𝑥𝑖 𝑗 ≤ 1, ∀𝑞 𝑗 ∈ 𝑆 (2)∑︁
𝑙𝑖 ∈𝑀,𝑞 𝑗 ∈𝑆

𝑐𝑖 𝑗 𝑥𝑖 𝑗 ≤ 𝐶max (3)

Here, (2) ensures that every sample is assigned to at most one LM.
(b) Performance-oriented ILP strategy: Similar to the previous

case, we formulate this problem in the form of an ILP. The goal in
this case is to minimize the cost, while respecting the performance
constraint 𝑃min that the user has set. In short, following the same
notation as before, this problem is formalized as follows:

minimize
∑︁

𝑙𝑖 ∈𝑀,𝑞 𝑗 ∈𝑆
𝑐𝑖 𝑗 𝑥𝑖 𝑗 (4)

s.t.
∑︁
𝑙𝑖 ∈𝑀

𝑥𝑖 𝑗 ≤ 1, ∀𝑞 𝑗 ∈ 𝑆 (5)∑︁
𝑙𝑖 ∈𝑀,𝑞 𝑗 ∈𝑆

𝑝𝑖 𝑗 𝑥𝑖 𝑗 ≥ 𝑃min (6)

This strategy can also be implemented when binarizing the perfor-
mance values 𝑝𝑖 𝑗 , as done under the cost-insensitive thresholding
strategy. In that case, the performance-oriented ILP strategy can be
viewed as minimizing the cost for solving at least 𝑃min samples.

(c) Greedy strategy: This strategy works by going through the
samples sequentially and choosing, for each sample, the LM achiev-
ing the highest performance according to the meta-model, until the
cost constraint is reached. After this point, remaining data samples
remain unassigned and are not fed to any of the LMs in the pool.
For our experiments (cf. Sec. 4.2), they are counted as incorrect
(when using accuracy as the performance metric), with cost zero.

4 EXPERIMENTS
4.1 Meta-model evaluation

Data. As our main source of data, we use raw LM runs from the
HELM project [14]. Raw runs consist of inputs (queries and full
prompts) sent to the LM, generation parameters, ground truth refer-
ences, and LM outputs with additional details such as log probability
and the time it took to execute the prompt.

Raw model runs have been released for a wide range of datasets
covering multiple tasks. While all of these tasks are in the same
input format (query), standard metrics used to evaluate the quality
of the output can be vastly different between tasks. For example,
summarization output is often evaluated using ROUGE scores [15],

which are continuous values from 0 to 1, and question-answering
can be evaluated using EM (exact match), which is a binary metric.

For the sake of this paper, we focus on tasks for which there is
a clear answer to whether the model’s output solves the query or
not. This means we focus on tasks that are normally evaluated only
using binary metrics. In particular, the datasets we are working
with are evaluated with one of the following metrics:

• Exact match (EM): The LM output matches the ground-
truth reference string exactly.

• Quasi-exact match: As defined by Liang et al. [14], this
metric equals EM, but after slightly preprocessing output and
ground truth (e.g., by lower-casing, removing whitespace,
punctuation, and articles).

• Equivalent: LM output has to be mathematically equal to
the ground truth reference.

Following the terminology introduced by Liang et al. [14], we refer
to all of these metrics, applied to the whole set of samples, as
accuracy. For more details on datasets and types of tasks, see Table 1.

To train and evaluate the meta-model, we use LM queries as
inputs, and as outputs we use the performance scores calculated
based on the ground-truth references and the LM’s outputs. The
metric used to calculate the score is dependent on the task and
dataset that the query comes from (see Table 1). We append an LM
token “[LM𝑖 ]” to the input to differentiate for which LM we are
estimating the probability of answering the query.

LMs. We opt to work with a set of OpenAI models tested by Liang
et al. [14], for two reasons. First, while the size of these LMs is
not publicly available, all of them differ in their capabilities.3 This
diversity provides our framework with the flexibility to employ
less powerful models for simpler queries and more potent models
for more complex ones. Second, for this set of models, there is a
fairly straightforward way to calculate the cost of each sample
as the price of running the query with the selected LM using the
OpenAI API. For the cost of the output, which is unknown prior
to running the respective query, we calculate the average length
of the outputs (in tokens) as available in the HELM data and apply
the same pricing as for the query. For details on pricing at the time
of training and average output lengths, see Table 2.

Implementation. Our meta-model is a DistilBERT model4 (66M
parameters), finetuned on the collected dataset of raw runs. It was
trained using the Adam optimizer with learning rate 3 × 10−5 and
0.1 gradient clipping on the Euclidean norm. The model was trained
for 3,000 steps with batch size 16 and a polynomial learning rate
scheduler with a final learning rate of 0. Training was performed
on a machine with a single Tesla T4 16GB GPU, taking around 2h.

As a baseline to compare against, we use a dummy classifier that
always predicts the most frequent class, depending on the dataset
that the query comes from. It is worth noting that, during inference,
the meta-model works only with the query, without the need to
specify the dataset from which the query comes.

Evaluation metrics. To evaluate the performance of the meta-
model, we use standard metrics: accuracy, precision, recall, and F1

3https://platform.openai.com/docs/models/overview
4Initialized with the weights of the ’distilbert-base-uncased’ model; see https://
huggingface.co/distilbert-base-uncased.

https://platform.openai.com/docs/models/overview
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased
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score. We calculate macro scores to give equal weight to each class,
regardless of its frequency. We additionally calculate ROC-AUC
and PR-AUC scores. To distinguish between the accuracy of the
meta-model and that of the actual language models themselves, we
refer to the meta-model’s accuracy as meta-accuracy.

Results. In Table 3 we present results of meta-model evaluation.
Along with results on the whole testing dataset, we present results
stratified by datasets, tasks, and LMs. The overall performance of
the meta-model is good, as reflected in a high score over all the
metrics calculated. The difference between the meta-model and
the dummy classifier, though significant, is not big. This happens
because, as indicated by the meta-accuracy of the dummy classifier
(cf. column 7 of Table 3), in most of the datasets the class imbalance
is big. As a result, the performance (in terms of meta-accuracy) of
the dummy classifier is high. But note that, in a real-world setting,
we do not have access to the dataset which the query comes from
(it might even correspond to a task not seen during meta-model
training), which is essential for the dummy classifier to work. As
such, it is not a practical option, but merely an evaluation baseline.
Our meta-model does not require knowing the task and can be used
with arbitrary queries. Finally, the metric we ultimately care about
is not meta-accuracy, but rather the accuracy of the LM chosen
based on the meta-model’s predictions (as evaluated in Sec. 4.2).

Stratification over datasets and tasks uncovers that there are
certain types of datasets and tasks for which it is harder to predict
LM performance. These are more complex tasks, which are not
trivial for any of the LMs, such as subtypes of the reasoning task.

Stratification over LMs shows that it is harder to predict the
behavior of the bigger LMs. Smaller LMs are generally able to work
on simpler tasks (for example, see CivilComments plot in Fig. 4 and
Sentiment analysis plot in Fig. 5), but they fail on more complex
tasks (see GSM8K plot in Fig. 4). Bigger LMs are, on the other hand,
able to solve some complex tasks, which means that the meta-model
has to understand more complicated patterns to correctly predict
whether an LM can solve the task or not.

Calibration. We assess calibration via calibration plots obtained
by grouping output probabilities into bins of equal width and plot-
ting the fraction of positive samples against the mean value of the
bin. In Fig. 2a we can see that the meta-model is well calibrated, as
the calibration curve lies close to the diagonal representing perfect
calibration. (For task-specific calibration plots, see Fig. 2b.)

Generalization. In an attempt to evaluate how well this meta-
model would generalize, we retrain it on all datasets but one at a
time. We then evaluate the performance of these meta-models on
the respective left-out dataset. Results are presented in Table 4. By
comparing these numbers with the ones presented in Table 3, we
can notice that, although the numbers are generally a little lower,
the meta-model is able to generalize to the left-out dataset.

4.2 Framework evaluation

Implementation. In order to evaluate the performance of the
framework as a whole, we assign each sample in the test set to
one of the LMs in our pool (or none) and calculate the accuracy
achieved by running these samples with the assigned LMs. The
assignment is done by applying different strategies to the outputs of

the meta-model. Additionally, we evaluate cost as described earlier
in Sec. 4.1. Based on those two values, wemake a cost–accuracy plot.
Cost–accuracy plots (cf. Fig. 3) present the relationship between
accuracy achieved using the chosen strategy and the average cost
per query needed to perform the run. For cost-sensitive strategies,
we run this analysis for a range of cost constraints to trace the
cost–performance trade-off.

We opt to evaluate only one ILP based strategy—the cost-oriented
one—because the performance-oriented one can be seen as the other
side of the same coin. While in a practical sense, the performance-
oriented ILP strategy is useful because it offers the user the possi-
bility to estimate the budget needed for the desired quality of the
results, this is visible from the cost-oriented strategy results on the
cost–accuracy plot when we run it for different cost constraints.

To solve the ILP problem for the cost-oriented strategy, we use
the PuLP5 library with the PULP_CBC_CMD solver. Given the sim-
plicity of the ILP, the total time of assignment for all the queries is
overshadowed by the run time of the meta-model. For our testing
dataset, obtaining all probabilities from the meta-model takes a few
minutes, while solving the ILP takes only a fraction of a second.
Nonetheless, we leave the option to the user to specify a time limit
for ILP execution when working with bigger datasets. If the prob-
lem is not solved by the time it reaches the limit, the user will be
left with a possibly suboptimal solution.

Oracle.We calculate the optimal assignment on the ground-truth
data by always choosing the cheapest LM that solves the sample.
When no LM solves the sample, we assume that the best option is
not to send this sample to any of the available LMs. The sample
is counted as incorrect when calculating the accuracy, and with a
cost of zero when calculating the average cost.

Results. In Fig. 3, we present the results of the framework evalua-
tion in the form of a cost–accuracy plot. First, we can see that the
oracle is not only cheaper than choosing the biggest LM (84.46%
lower cost), but it also performs better (+10.74% in accuracy). This
means that there are cases where a smaller LM performs not only
on par, but better than the bigger options. Next, looking at the re-
sults under single-model strategies, we can notice a clear difference
between the LMs. For comparison, the cheapest LM (text-ada-001)
is 98.05% cheaper than the biggest LM (text-davinci-002), while
achieving 18.18% (absolute) smaller accuracy. There is no signifi-
cant difference between the two smallest models (text-ada-001 and
text-babbage-001), neither in cost nor in accuracy.

Two additional cost-insensitive strategies, the performance-max-
imizing approach and the thresholding strategy, exhibit comparable
performance in terms of accuracy to the largest model (text-davinci-
002). Notably, the thresholding strategy stands out for not only its
effectiveness but also its much lower cost. In terms of cost effective-
ness, it offers a 62.1% (absolute) reduction relative to text-davinci-
002, while the performance-maximizing strategy offers an 11.5%
cost reduction relative to text-davinci-002.

Next, we focus on the cost-sensitive strategies. Note that, for each
of these, Fig. 3 shows multiple points, one per maximum available
budget (corresponding to the value on the 𝑥-axis). By employing
cost-sensitive strategies, we are able to further save budget, while

5https://coin-or.github.io/pulp/

https://coin-or.github.io/pulp/
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Meta-model Dummy classifier (majority label per dataset)
Meta-accuracy Precision Recall F1 ROC-AUC PR-AUC Meta-accuracy Precision Recall F1

Overall 81.57* ± 0.78 79.90* ± 0.81 80.65* ± 0.64 80.26* ± 0.75 80.62* ± 0.83 79.30* ± 0.85 79.60* ± 0.69 78.03* ± 0.89 77.25* ± 0.79 77.62* ± 0.71

Dataset
MMLU 73.08* ± 3.63 69.22* ± 6.48 61.63* ± 4.64 61.89* ± 5.25 61.96* ± 4.37 58.47 ± 9.09 68.59* ± 4.81 34.32* ± 2.51 50.00* ± 0.00 40.69* ± 1.51

RAFT 67.59* ± 5.37 68.98* ± 5.88 65.64* ± 5.52 65.76* ± 5.42 65.83* ± 5.37 79.60 ± 4.12 55.33* ± 5.92 27.71* ± 2.61 50.00* ± 0.00 35.48* ± 2.52

WikiFact 87.21 ± 0.82 71.06* ± 2.50 62.25* ± 1.77 64.66* ± 1.98 62.36* ± 1.85 44.94* ± 3.99 86.95 ± 0.95 43.47* ± 0.47 50.00* ± 0.00 46.52* ± 0.25

Entity matching 90.00* ± 1.86 94.87* ± 1.04 57.67* ± 3.44 60.36* ± 4.73 57.25* ± 3.35 94.83* ± 1.15 88.10* ± 2.07 44.05* ± 0.93 50.00* ± 0.00 46.83* ± 0.65

Data imputation 81.02* ± 4.78 77.10* ± 7.17 70.32* ± 5.79 71.90* ± 7.00 69.31* ± 6.17 90.75* ± 2.94 73.92* ± 5.47 37.07* ± 2.44 50.00* ± 0.00 42.41* ± 1.74

BoolQ 64.82* ± 3.55 65.33* ± 5.19 56.93* ± 2.83 54.07* ± 4.15 56.94* ± 2.66 80.92 ± 2.05 60.85* ± 3.49 30.47* ± 2.05 50.00* ± 0.00 37.84* ± 1.52

TruthfulQA 76.02* ± 4.06 70.48* ± 5.08 68.05* ± 5.12 68.88* ± 4.79 67.81* ± 4.98 61.79 ± 7.87 71.51 ± 4.50 35.57* ± 2.16 50.00* ± 0.00 41.55* ± 1.67

IMDB 86.35* ± 2.71 43.42* ± 1.42 49.49* ± 0.39 46.30* ± 0.74 49.51* ± 0.43 93.48* ± 1.07 86.90* ± 2.67 43.58* ± 1.36 50.00* ± 0.00 46.54* ± 0.87

bAbI 74.57* ± 3.72 73.48* ± 3.22 74.11* ± 3.55 73.78* ± 3.83 73.95* ± 3.51 75.18* ± 3.64 59.16* ± 4.26 29.63* ± 1.91 50.00* ± 0.00 37.18* ± 1.45

MATH 92.89 ± 3.19 75.07 ± 26.13 52.42 ± 3.57 52.91 ± 8.01 52.38 ± 4.01 56.43 ± 5.11 92.56 ± 2.84 46.05 ± 1.45 50.00 ± 0.00 48.01 ± 0.84

GSM8K 90.82 ± 1.77 45.51 ± 0.89 50.00 ± 0.00 47.67 ± 0.61 50.00 ± 0.00 54.50 ± 1.11 91.05 ± 1.99 45.54 ± 0.90 50.00 ± 0.00 47.64 ± 0.58

LSAT 76.83 ± 4.58 38.48 ± 2.13 50.00 ± 0.00 43.37 ± 1.63 50.00 ± 0.00 61.54 ± 2.38 77.19 ± 4.68 38.28 ± 2.56 50.00 ± 0.00 43.60 ± 1.68

LegalSupport 49.45 ± 3.30 48.97* ± 5.16 49.30 ± 2.99 44.17* ± 3.30 49.46 ± 3.03 70.06* ± 2.78 50.58 ± 4.55 25.28* ± 1.91 50.00 ± 0.00 33.61* ± 1.57

CivilComments 79.22 ± 3.01 39.57 ± 1.80 50.00 ± 0.00 44.17 ± 0.99 50.00 ± 0.00 89.58 ± 1.64 79.04 ± 2.88 39.68 ± 1.48 50.00 ± 0.00 44.10 ± 0.98

Task
QA 83.40* ± 0.88 74.09 ± 1.48 71.00* ± 1.56 72.25* ± 1.40 70.96* ± 1.33 60.07* ± 2.30 82.32* ± 0.74 72.85 ± 1.91 62.73* ± 1.33 65.06* ± 1.59

Sentiment analysis 86.34* ± 2.50 43.48* ± 1.31 49.51* ± 0.47 46.32* ± 0.78 49.54* ± 0.43 93.45* ± 1.23 86.85* ± 2.63 43.47* ± 1.21 50.00* ± 0.00 46.54* ± 0.72

Toxicity detection 79.27 ± 2.96 39.58 ± 1.51 50.00 ± 0.00 44.23 ± 0.89 50.00 ± 0.00 89.59 ± 1.47 79.07 ± 3.46 39.53 ± 1.69 50.00 ± 0.00 44.23 ± 0.85

Text classification 68.11* ± 5.08 69.00* ± 6.00 65.84* ± 5.43 65.36* ± 5.77 65.17* ± 4.94 79.65 ± 3.97 55.14* ± 5.79 27.73* ± 2.96 50.00* ± 0.00 35.33* ± 2.49

Reasoning 74.64* ± 1.67 69.80* ± 1.88 70.79* ± 2.03 70.18* ± 1.89 70.72* ± 1.72 64.49* ± 2.81 70.87* ± 1.58 64.26* ± 2.06 63.28* ± 2.21 63.58* ± 1.96

LM
ada 85.18* ± 1.28 82.33* ± 1.56 83.16 ± 1.53 82.77* ± 1.51 83.15 ± 1.47 79.41 ± 1.93 83.20* ± 1.54 80.02* ± 1.55 82.01 ± 1.53 80.84* ± 1.63

babbage 84.37 ± 1.42 81.67 ± 1.35 83.08 ± 1.45 82.21 ± 1.67 83.13 ± 1.67 79.52 ± 1.79 83.34 ± 1.40 80.63 ± 1.61 82.02 ± 1.44 81.23 ± 1.55

curie 80.88* ± 1.54 78.83* ± 1.36 79.99* ± 1.70 79.23* ± 1.68 80.02* ± 1.63 77.49* ± 1.93 79.27* ± 1.48 77.10 ± 1.44 76.75* ± 1.63 77.07* ± 1.61

davinci 75.84* ± 1.39 75.83* ± 1.51 75.75* ± 1.54 75.83* ± 1.49 75.73* ± 1.58 81.01* ± 1.54 72.44* ± 1.44 74.30 ± 1.42 71.91* ± 1.61 71.52* ± 1.81

Table 3: Performance of the meta-model. Precision, recall, and F1 are macro-averaged over classes. We use threshold 0.5 for
these metrics. The meta-model is compared to a dummy classifier that outputs the most probable class in the dataset from
which the sample comes. Results are stratified by dataset, task, and LM and presented with 95% confidence intervals. We do not
report ROC-AUC and PR-AUC for the dummy classifier because the dummy classifier is threshold-independent and therefore
these two metrics are not informative for it. Asterisks (*) mark results where the meta-model (left) performs statistically
significantly (𝑝 < 0.05) differently from the dummy classifier (right).
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Figure 2: Calibration plots. Plots are obtained by grouping the meta-model’s output probabilities into bins of equal width and
then plotting the fraction of positive samples against the mean value of the bin.

achieving essentially the same accuracy as the largest model (text-
davinci-002). In particular, with the cost-oriented ILP strategy, we
match text-davinci-002’s accuracy for only 37.21% of the cost. The
greedy strategy, on the other hand, performs much worse: in this
case, we need 88.57% of the budget for the same result.

Although the oracle indicates that there is space for improve-
ments in terms of accuracy as well, we did not manage to achieve
better accuracy than text-davinci-002 with any budget given to the
framework. This happens because our meta-model is not able to
correctly identify the cases when text-davinci-002 fails to do the
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Dataset Meta-acc. Precision Recall F1 ROC-AUC PR-AUC

MMLU 71.78 ± 4.51 67.85 ± 7.80 58.29 ± 3.91 56.95 ± 5.57 57.77 ± 4.34 55.12 ± 8.77

RAFT 54.26 ± 5.73 53.49 ± 5.91 52.88 ± 5.01 52.71 ± 5.80 53.01 ± 5.87 70.87 ± 5.37

WikiFact 72.80 ± 1.29 57.49 ± 1.34 62.93 ± 1.96 57.54 ± 1.47 62.78 ± 1.96 39.82 ± 2.37

Entity matching 77.00 ± 2.53 55.07 ± 2.90 57.80 ± 4.50 55.58 ± 3.91 57.03 ± 4.72 94.02 ± 1.36

Data imputation 71.50 ± 5.41 64.23 ± 6.03 66.10 ± 6.82 64.63 ± 6.68 66.57 ± 6.97 88.93 ± 3.04

BoolQ 59.22 ± 3.82 59.30 ± 3.42 59.45 ± 4.06 59.23 ± 3.88 59.80 ± 3.95 76.95 ± 3.38

TruthfulQA 75.04 ± 4.02 68.97 ± 5.80 65.10 ± 4.36 66.14 ± 4.88 65.32 ± 4.97 58.89 ± 8.24

IMDB 38.99 ± 3.52 52.50 ± 2.67 54.34 ± 4.74 36.90 ± 4.02 54.76 ± 4.80 90.75 ± 2.74

bAbI 64.38 ± 3.75 62.75 ± 4.24 60.55 ± 3.85 60.33 ± 3.98 60.19 ± 4.19 61.79 ± 5.14

MATH 80.90 ± 4.27 58.41 ± 5.52 70.96 ± 11.44 60.55 ± 8.06 71.41 ± 9.83 43.11 ± 14.01

GSM8K 89.55 ± 2.24 65.46 ± 6.91 60.36 ± 6.10 61.95 ± 6.22 60.37 ± 5.76 33.90 ± 13.61

LSAT 74.18 ± 4.71 51.70 ± 11.05 50.44 ± 3.83 47.64 ± 5.10 50.37 ± 3.18 26.09 ± 14.69

LegalSupport 49.88 ± 3.80 49.49 ± 3.77 49.65 ± 3.63 48.89 ± 3.99 49.46 ± 3.73 65.85 ± 3.73

CivilComments 71.36 ± 3.50 41.81 ± 3.46 45.99 ± 2.03 43.44 ± 2.09 46.10 ± 1.61 87.78 ± 1.73

Table 4: Leave-one-out evaluation. Performance of meta-
model on a dataset left-out in training. Each row of the table
trains a meta-model on all datasets except the one denoted
in the row. Testing is then performed on the denoted dataset.
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Figure 3: Cost-accuracy plot. Accuracy and average cost per
query (in US$) achieved by assigning every query from the
query set to an LM from the LM pool. The plot shows results
obtained using assignment strategies from Sec. 3.2. Single
model strategies for each LMs are marked by the number
under them: (1) text-ada-001 (2) text-babbage-001 (3) text-
curie-001 (4) text-davinci-002. Two thresholding strategies
for cases when none of the LMs solve the data sample are
marked by a letter under them: choosing (a) the biggest and
(b) the smallest LM. Error bars are 95% confidence intervals.

task correctly, but some of the smaller models successfully do. This
scenario happens in 10.72% of cases, but we manage to identify it
only 0.68% of the time. For comparison, 33.03% of data samples are
successfully solved by both text-davinci-002 and one of the smaller
models, and we correctly recognize this scenario 78.56% of the time.

In Fig. 4 and Fig. 5 we present cost–accuracy plots stratified by
dataset and task, respectively. First, by focusing on the oracle and
text-davinci-002 results on these plots, we spot that, for most of
the datasets and tasks, the oracle indicates that there is the same
potential to improve both the accuracy and the cost as in the overall
case. In rare cases (e.g.,MATH, GSM8K) there is not much space for

improvement in terms of accuracy, as small LMs fail to do the task
in almost all cases.

Second, patterns similar to the ones present in Fig. 3 are also
visible for most of the datasets and tasks. For example, using the
cost-oriented ILP strategy on the question-answering (QA) task,
we are able to achieve the same performance as text-davinci-002
for 71.76% of the price. For the reasoning and the text classification
task, these percentages are equal to 83.41% and 19.15%, respectively.

For some of the tasks, smaller LMs are also able to solve the
queries either in the sameway or even better than bigger LMs. As an
example of the former, for the sentiment analysis task, text-babbage-
001 drops only 4.83% in accuracy compared to text-davinci-002 for
just 2.35% of its price. In the latter case, on the toxicity detection task,
using text-ada-001 results in a 19.87% jump in accuracy compared
to text-davinci-002, while spending only 1.99% of the budget used
for running text-davinci-002.

Thanks to this, depending on the dataset, there are cases where
using the meta-model helps us achieve both lower cost and higher
performance than text-davinci-002. For example, on the CivilCom-
ments dataset (which is a part of the toxicity detection task), using
the cost-oriented ILP strategy results in 20.1% (absolute) higher
accuracy for only 1.99% of the cost of running text-davinci-002.
This result essentially matches the oracle for this dataset.

5 DISCUSSION
5.1 Further use cases of the FORC framework
In the previous sections (cf. Sec. 3.2 and Sec. 4.2), we introduced and
evaluated two ILP-based strategies: cost-oriented and performance-
oriented. This is, however, not the only potential use of our frame-
work. The user can form an objective function as a custom combi-
nation of the terms involving cost and performance, and, similarly,
use any combination of the cost and performance constraints. This
allows for increased flexibility in practical applications.

Additionally, FORC need not be used only to make a decision
about an LM to run a certain query. By fixing the LM and calculating
the output probabilities for different phrasings of the desired query,
one could use the framework to identify the best possible prompt
to send to the LM, without the need to spend money by sending
them to the LM directly. For this application, it would be advisable
to retrain the meta-model to fit the task better, as the current meta-
model was not exposed to small changes in queries during training,
and its behavior in such cases is unknown.

5.2 Practical considerations
With the emergence of new LMs, our meta-model may become
stale, as it will not include the possibility to use the newer LMs
with likely better abilities. Additionally, as shown by Chen et al. [4],
the behavior of GPT-3.5 and GPT-4 is changing over time. While in
this paper we do not focus on these two LMs, it is not unreasonable
to assume that, with newer versions, the LMswe have been working
with exhibit the same behavioral shifts. To minimize the effect of
these changes on our framework, meta-model should be retrained
to take into account any updates in the existing LMs as well as the
newly introduced LMs. Because our meta-model is small, training
is cheap and takes little time, so it is easy to retrain frequently.
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Figure 4: Cost–accuracy plot per dataset. Accuracy and average cost per query (in US$) achieved by employing strategies from
Sec. 3.2 on the test dataset stratified by datasets from Table 1. Single-model and thresholding strategies follow the same trends
as in Fig. 3. Error bars are 95% confidence intervals.
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Figure 5: Cost–accuracy plot per task. Accuracy and average cost per query (in US$) achieved by employing strategies from
Sec. 3.2 on the test dataset stratified by tasks from Table 1. Single-model and thresholding strategies follow the same trends as
in Fig. 3. Error bars are 95% confidence intervals.

In addition, we calculated the costs of running different LMs
with the pricing from OpenAI at the time of meta-model training.
These prices were changing in the past, and will probably change in
the future. When such changes happen, the cost parameters should
be updated in the framework, as it would affect the cost–accuracy
plots and, consequently, the assignment of data samples to LMs.

6 CONCLUSION
In this paper, we address the problem of the increasing costs of
running LMs for various tasks. We introduce “Fly-swat or cannon”

(FORC), a framework for automatically deciding which LM is the
best option for a given input query. By employing FORC to the
union of 14 datasets, we are able to reduce costs by 62.79% while
maintaining the same performance as the biggest LM in our pool.
We manage to substantially cut costs on all types of task, and on
most of the datasets we evaluate on. We also release a library that
enables easy use of our framework, as well as further developments.
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