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Abstract

Recent advances in artificial intelligence (AI) have produced highly capable and
controllable systems. This creates unprecedented opportunities for structured
reasoning as well as collaboration among multiple AI systems and humans. To
fully realize this potential, it is essential to develop a principled way of designing
and studying such structured interactions. For this purpose, we introduce the
conceptual framework of Flows: a systematic approach to modeling complex
interactions. Flows are self-contained building blocks of computation, with an
isolated state, communicating through a standardized message-based interface. This
modular design allows Flows to be recursively composed into arbitrarily nested
interactions, with a substantial reduction of complexity. Crucially, any interaction
can be implemented using this framework, including prior work on AI–AI and
human–AI interactions, prompt engineering schemes, and tool augmentation. We
demonstrate the potential of Flows on the task of competitive coding, a challenging
task on which even GPT-4 struggles. Our results suggest that structured reasoning
and collaboration substantially improve generalization, with AI-only Flows adding
+21 and human–AI Flows adding +54 absolute points in terms of solve rate. To
support rapid and rigorous research, we introduce the aiFlows library. The library
comes with a repository of Flows that can be easily used, extended, and composed
into novel, more complex Flows.
The aiFlows library is available at https://github.com/epfl-dlab/
aiflows. Data and Flows for reproducing our experiments are available at
https://github.com/epfl-dlab/cc_flows.

1 Introduction

Scaling up language models has brought about a revolutionary transformation in the field of artificial
intelligence (AI) [6, 12]. In particular, the success of large language models (LLMs) lies in their
remarkable emergent ability to adapt to information within their context (i.e., prompt) [6, 21, 47]. By
strategically crafting the context, LLMs can be conditioned to perform complex reasoning [31, 47]
and effectively utilize external tools [40], significantly enhancing their capabilities. Some of the
most exciting recent developments involve defining control flows, wherein an LLM controls a set
of tools, orchestrated to solve increasingly complex tasks. Examples of such control flows include
ReAct[50], AutoGPT [36], or BabyAGI [30]. However, these examples represent but a few of the
many conceivable control flows, offering only a glimpse into the vast potential of structured LLM
interactions. To fully realize this potential, it is essential to develop principled ways of designing and
studying such interactions.

*,** Equal contribution

ar
X

iv
:2

30
8.

01
28

5v
1 

 [
cs

.A
I]

  2
 A

ug
 2

02
3

https://github.com/epfl-dlab/aiflows
https://github.com/epfl-dlab/aiflows
https://github.com/epfl-dlab/cc_flows


Tools

…

GPT-4

Search engine

Fixed reply

Code executor

Vector DB

Human input

Agent Flow
Prompt: few-shot,CoT… 

Web Search Flow

Code Testing
Flow

Vector DB Flow

Human Flow

Atomic	Flows
Wrap	tools	into	message-exchanging	

entities

… …

Composite	Flows
Orchestrate	the	interaction	between	

other	Flows
Plan-Code Flow
(Sequential)

Code Generator 

Code Feedback 

Code Feedback 
(Sequential)

Code Testing

Code Flow
(Generator-Critic)

Plan Generator 

Plan Feedback 

Plan Flow
(Generator-Critic)

Example	
Coding	Flow

Fixed Reply Flow
e.g., ”Are you sure?”

Generator Flow
can be any Flow

Generator-Critic Flow

Critic Flow
can be any Flow

Sequential Flow

…

Flow 1
can be any Flow

Flow 2
can be any Flow

Flow n
can be any Flow

Monitoring Flow

Example
Meta-Reasoning	Flow

Memory FLow

Any Flow

Control Flow

Execution Flow

…

Memory FLow

Any Flow

…

Memory FLow

Any Flow

…

Autonomous Flow

Figure 1: Flows framework exemplified. The first column depicts examples of tools, such as a
search engine or a code executor. The second column depicts Atomic Flows constructed from the
example tools. The third column depicts examples of Composite Flows defining structured interaction
between Atomic or Composite Flows. The fourth column illustrates a specific Composite competitive
coding Flow as an example of those used in the experiments. The fifth column outlines the structure
of a hypothetical Flow defining a meta-reasoning process that could support autonomous behavior.1

Currently, no general yet efficient abstraction exists for effectively modeling structured interactions.
Previous work and existing frameworks, such as LangChain [7], Chameleon [25], HuggingGPT
[42], have converged on modeling agents as entities that use LLMs to select and execute actions
towards specific tasks, where the set of possible actions is pre-defined by the available tools. In this
view, tools serve a narrow, well-defined goal and can perform sophisticated tasks (e.g., querying
a search engine or executing code). However, their behavior is limited to a single interaction. To
highlight the implications of this limitation, consider the following scenario: Alice wants to apply
for a job at HappyCorp. If Alice is an agent, she would need to explicitly plan the entire process,
including preparing the application, sending it, and evaluating it, which may involve a background
check, scheduling an interview, and more. Alice would need the knowledge and the “computational”
ability to plan every detail. Furthermore, unforeseen events may arise (e.g., the interviewer went on
parental leave), requiring Alice to adapt and modify the plan. In reality, most of the complexity is
hidden from Alice behind an interface to HappyCorp’s hiring process that might itself be composed
of sub-processes involving many other agents and tools. The hiring process, carefully designed
by experts, can be reused by many agents, and sub-processes can be modified or improved with
minimal or no impact on the other components. It becomes evident that agents and tools should be
able to interact in complex, dynamic or static, ways as parts of nested, modular processes, and the
distinction between the two becomes blurred as they both serve as computational units in a complex
computational process.

In this work, we argue that everything is a (control) flow defining potentially complex interactions
between many diverse tools, where agents are just one type of tool. This induces a paradigm shift in
conceptualizing and designing structured interactions involving AI agents, tools, and humans. For
instance, an AI model used as a tool to pre-filter résumés is a flow of the simplest form — an atomic
flow — comprising a single call.

We introduce a conceptual framework where Flows are the fundamental building blocks of compu-
tation. Flows are independent, self-contained, goal-driven entities able to complete semantically
meaningful units of work. To exchange information, Flows communicate via a standardized message-
based interface. The framework is depicted in Fig. 1. Flows can be categorized into two types: Atomic
Flows, which encapsulate the execution of a tool, and Composite Flows, which organize interac-
tions between other Flows. In the Flows abstraction, we can model Alice as a Flow representing a
higher-level meta-reasoning process that can support autonomous behavior and HappyCorp’s hiring

1For more details on meta-reasoning Flows see Sec. 7
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process as a Flow orchestrating interactions between its sub-Flows (e.g., application pre-filtering and
background checks) that can involve multiple sub-Flows themselves (e.g., recruiters and interviewers).

The Flows abstraction ensures modularity. Alice does not need to know anything beyond how to
interface with HappyCorp’s hiring Flow. This substantially reduces complexity (Alice is interacting
with a deeply nested, compositional structured interaction through a simple interface) and provides
flexibility, allowing sub-Flows to be swapped without consequences as long as they have the same
interface. Indeed, HappyCorp’s pre-filtering Flow can be swapped from a rule-based system to
an AI model or even a human Flow without affecting the structure of the overall process. The
abstraction also enables reusability and the composition of sub-Flows into new Flows for different
tasks. Furthermore, the framework shares key design choices with the Actor model, one of the
most prominent models of concurrent computation (cf. Sec. 2). Certainly, once Alice submits her
application to HappyCorp, she does not need to wait for the response; she can move to her next goal
while the other Flows run concurrently.

Overall, Flows is general enough to represent any collaboration, including all prior work on AI–AI
and human–AI interactions, prompt engineering schemes, and tool augmentation (cf. Appendix A.1).
Accompanying the conceptual Flows framework, we release the aiFlows library, which embodies
the framework. The library comes with (i) FlowVerse: a repository of Flows that can be easily used,
extended, and composed into novel, more complex Flows. Notably, Flows allows for existing “tools”
(such as “models”, “chains”, “agents”, etc.) to be readily incorporated by wrapping them in an Atomic
Flow; (ii) a detailed logging infrastructure; and (iii) FlowViz: a visualization toolkit for inspecting
the execution of Flows.

To showcase the potential of our framework and library, we have selected the task of competitive
coding, a mind sport involving participants trying to solve problems defined by a specification. This
task is highly challenging, even for advanced models like GPT-4. Therefore, it serves as an ideal
scenario for exploring the potential benefits of employing various collaborative mechanisms and
structured reasoning patterns. We have designed specific Flows that include planning Flows, allowing
AI agents to strategize their approach; reflective Flows, which encourage AI agents to analyze and
improve their previous answers; collaborative Flows, where one AI agent seeks feedback from
another; and code testing Flows, which involve executing the code and refining the solution based on
the code testing results. By combining these building blocks, we have created multiple competitive
coding Flows, which we evaluated using newly curated coding problems from two popular platforms,
CodeForces and LeetCode. Our study evaluates which patterns of interactions are most beneficial for
competitive coding.

In summary, our contributions are as follows:

1. We propose Flows, a conceptual framework providing a high-level abstraction that enables
the design and implementation of arbitrarily nested interactions with a substantial reduction
of complexity, enabling flexibility considerably beyond existing libraries such as LangChain.
Flows can represent any interaction and provides a common framework for reasoning about
interaction patterns, specifying hypotheses, and structuring research, more broadly.

2. We demonstrate the potential of Flows by performing a systematic empirical study of
complex interactions for solving competitive coding problems. Our results suggest that GPT-
4 generalizes poorly on such difficult reasoning problems, with solve rates dropping from
72% on problems published before to 27% on problems published after the knowledge-cutoff
date. However, complex interactions greatly improve performance: (ii) AI–AI interactions
and tool augmentation improve the post-cutoff solve rate by over 20% (absolute); (iii)
minimal human-AI collaboration improves it by 54%. Additionally, the experiments offer
several more general insights: (i) the direct benefit of problem decomposition hinges on
the quality of the intermediate steps; (ii) involving humans at the core high-level reasoning
process yields major improvements as humans can easily provide high-quality, grounded
feedback. Strategic problem decomposition is a versatile strategy for creating opportunities
where the human can be effectively incorporated as part of the Flow; (iii) the benefit from
refinement depends on the level of grounding and the “novelty” of the information the
feedback mechanism provides.

3. We open-source the aiFlows library, including a repository of Flows that can be easily
used, extended, and composed into a novel, more complex Flows, as well as detailed
documentation and tutorials.
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2 Flows

This section introduces Flows as a conceptual framework, describes its benefits, and presents the
aiFlows library, which embodies the framework.

2.1 Flows as a Conceptual Framework

The framework is centered around Flows and messages. Flows represent the fundamental building
block of computation. They are independent, self-contained, goal-driven entities able to complete
a semantically meaningful unit of work. To exchange information, Flows communicate via a
standardized message-based interface. Messages can be of any type the recipient Flow can process.

We differentiate between two types of Flows: Atomic and Composite.2 Atomic Flows complete
the work directly by leveraging tools. Tools can be as simple as a textual sequence specifying a
(simple) Flow’s fixed response or as complex as a compiler, a search engine, powerful AI systems
like LLaMA [44, 45], Stable Diffusion [37], and GPT-4; or even a human. Notably, in the Flows
framework, AI systems correspond to tools. An Atomic Flow is effectively a minimal wrapper around
a tool and achieves two things: (i) it fully specifies the tool (e.g., the most basic Atomic Flow around
GPT-4 would specify the prompts and the generation parameters); and (ii) it abstracts the complexity
of the internal computation by exposing only a standard message-based interface for exchanging
information with other Flows. Examples of Atomic Flows include wrappers around chain-of-thought
prompted GPT-4 for solving math reasoning problems, few-shot prompted LLaMA for question
answering, an existing chatbot, a search engine API, or an interface with a human.

Composite Flows accomplish more challenging, higher-level goals by leveraging and coordinating
other Flows. Crucially, thanks to their local state and standardized interface, Composite Flows
can readily invoke Atomic Flows or other Composite Flows as part of compositional, structured
interactions of arbitrary complexity. Enabling research on effective patterns of interaction is one of
the main goals of our work. General examples of such patterns include (i) factorizing the problem
into simpler problems (i.e., divide and conquer); (ii) evaluating (sub-)solutions at inference time (i.e.,
feedback); and (iii) incorporating external information or a tool. Importantly, Flows can readily invoke
other, potentially heavily optimized, specialized Flows to complete specific (sub-)tasks as part of an
interaction, leading to complicated behavior. One notable instance of a Composite Flow is ReAct [50].
ReAct corresponds to a sequential Flow that structures the problem-solving procedure in two steps: a
Flow selects the next action out of a predefined set of actions, after which the Flow corresponding to
the selected action executes it. The two steps are performed until an answer is obtained. Another
prominent example, AutoGPT, extends the ReAct Flow with a Memory Flow and an optional Human
Feedback Flow. This connection is made obvious thanks to Flows. More generally, the framework
provides a unified view of all prior, and we make this explicit in Appendix A.1.

Importantly, Composite Flows can script an arbitrarily complex pattern (i) precisely specifying an
interaction (e.g., generate code, execute tests, brainstorm potential reasons of failure, repeat until the
tests pass); or (ii) defining a high-level, meta-reasoning process in which a Flow could bring about
dynamic unconstrained interactions (see the examples in Fig. 1).

Key properties. The proposed framework is characterized by the following key properties:

• Flows are the compositional building blocks of computation.
• Flows encapsulate a local, isolated state.
• Flows interact only via messages.
• Flows’ behaviour depends only on their internal state and the input message.
• Flows can send messages to other Flows and create new Flows.

Connection to the Actor model. Flows is fundamentally a framework modeling the computation
underlying interactions. As such, it shares key design principles with the Actor model [15] — a
mathematical model of concurrent computation. Similarly to Flows, in the Actor model, an Actor
is a concurrent computation entity that can communicate with other Actors exclusively through an
asynchronous message-passing interface. By encapsulating the state and the computation within

2The concept of a Flow is sufficient for modeling any interaction. We introduce this distinction as it improves
the exposition and simplifies the implementation.
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individual Actors, the model provides a high-level abstraction for effectively managing and reasoning
about complex concurrent and distributed systems, completely avoiding issues associated with shared
states, as well as race conditions and deadlocks. These benefits are similar in nature to those observed
in the domain of collaborations. The main distinction between the proposed framework and the
Actor model resides in their respective communication protocols. Concretely, while the Actor model
prescribes purely asynchronous communication, Flows also support synchronous communication,
which is essential for the implementation of structured reasoning. Interestingly, a similar deviation
from the “pure” Actor model can be identified in the implementation of Erlang, a concurrent program-
ming language based on it [3]. Nevertheless, the shared design choices still make Flows inherently
concurrency-friendly from the practical perspective and are sufficient for important results from the
five decades of extensive studies on the Actor model, such as the fact that every physically possible
computation can be directly implemented using Actors [14], to transfer to Flows.

2.2 Why Flows?

Modularity. Flows introduces a higher-level abstraction that isolates the state of individual Flows
and specifies message-based communication as the only interface through which Flows can interact.
This ensures perfect modularity by design.

Reduction of complexity. The framework ensures the complexity of the computation performed by
a Flow is fully abstracted behind the universal message-based interface. This enables an intuitive and
simple design of arbitrarily complex interactions from basic building blocks.

Systematicity, flexibility, and reusability. The separation of responsibility allows for modules to
be developed and studied systematically in isolation or as part of different interactions. Once the
correctness and the benefits of a Flow have been established, it can be readily used in developing
novel Flows or as a drop-in replacement for less effective Flows leveraged in completing similar
goals.

Concurrency. The proposed framework’s design is consistent with the Actor model, one of the most
prominent models of concurrent computation. As a consequence, Flows can readily support any
setting in which Flows run and interact with each other concurrently.

2.3 The aiFlows Library

Accompanying Flows, we release the aiFlows library, which embodies the framework. In addition
to the inherent benefits that come with the framework, the library comes with the following add-ons:
(i) FlowVerse: a repository (to which anyone can contribute) of Flows that can be readily used,
extended, or composed into novel, more complex Flows. Flows allows for existing “tools” (as well
as “models”, “chains”, “agents”, etc.) to be readily incorporated by wrapping them in an Atomic
Flow; (ii) a detailed logging infrastructure enabling transparent debugging, analysis, and research in
optimizing Flows; (iii) FlowViz: a visualization toolkit to examine the Flows’ execution through an
intuitive interface.

3 Competitive Coding Flows

Flows provides an abstraction that makes it easy to design, implement, and reason about interactions
of arbitrary complexity. In this work, we demonstrate the potential of the framework and the
accompanying library on competitive coding, a particularly complex and challenging task. Fig. 2
presents illustrative examples of competitive coding problems consisting of a natural language
description and input–output examples. The goal is to write executable code that will successfully
pass all the hidden input–output test cases associated with the problem.

We focus our analysis on three canonical dimensions of interactions: (i) problem decomposition as
structured reasoning; (ii) refinement with various feedback types; and (iii) human-AI collaboration.
By providing a common language for clearly specifying interactions as well as a compositional
capability to flexibly exchange and extend them, the framework makes it possible to study the space
of complex interactions in a principled fashion. In the rest of the section, we describe the specific
Flows used in the experiments. They are depicted in Fig. 3.
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You have received data from a Bubble bot. You know your task is to make factory facilities, but 
before you even start, you need to know how big the factory is and how many rooms it has. When you 
look at the data you see that you have the dimensions of the construction, which is in rectangle 
shape: N x M.
Then in the next N lines you have M numbers. These numbers represent factory tiles and they can go 
from 0 to 15. Each of these numbers should be looked in its binary form. Because from each number you 
know on which side the tile has walls. For example number 10 in it's binary form is 1010, which means 
that it has a wall from the North side, it doesn't have a wall from the East, it has a wall on 
the South side and it doesn't have a wall on the West side. So it goes North, East, South, West.
It is guaranteed that the construction always has walls on it's edges. The input will be correct.
Your task is to print the size of the rooms from biggest to smallest.

Example 1:
Input: 4 5 
       9 14 11 12 13 
       5 15 11 6 7 
       5 9 14 9 14 
       3 2 14 3 14
Output: 9 4 4 2 1 

CodeForces 

LeetCode (Hard)

Given an input string (s) and a pattern (p), implement wildcard pattern matching with support 
for '?' and '*' where:
•'?' Matches any single character.
•'*' Matches any sequence of characters (including the empty sequence).
The matching should cover the entire input string (not partial).

Example 1:
Input: s = "aa", p = "a"
Output: false
Explanation: "a" does not match the entire string "aa".

Figure 2: Examples of competitive coding problems from Codeforces and LeetCode.
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Figure 3: Competitive coding Flows. At the highest level, we consider planning as a specific
structured reasoning pattern for problem decomposition. In particular, the Plan Flow generates a
solution strategy and passes it to the Code Flow, which implements it, as depicted in A). B) and C)
depict the different choices of sub-Flows used as Plan and Code Flows in the experiments. Importantly,
we explore the impact of human-AI collaboration at the plan level and refinement with different types
of feedback: i) fixed reply encouraging reflection; ii) AI generated feedback; iii) code testing results
as feedback; iv) AI generated feedback grounded in code testing results.

Problem decomposition. Planning has been an integral intermediate step in recent work [25, 42, 50].
Similar problem decomposition is natural in the context of competitive coding as well. In particular,
we approach the competitive coding task in two steps: generating a solution strategy by a Plan Flow
and then generating the corresponding code by a Code Flow. This is depicted by panel A in Fig. 3.

Human-AI collaboration. When designing human-AI collaborations, it is essential to take into
account the costs of human interaction [2, 16, 29, 46]. By providing immense flexibility, Flows can
support research on the design of interactions involving humans as computational building blocks in
a way that maximizes the utility of the overall computation with minimal human effort. In the context
of competitive coding, we hypothesize that human input would be most effectively incorporated at
the plan level, asked to provide a short “oracle” plan in natural language. We operationalize this by
an Atomic Human Flow, illustrated in Panel B of Fig. 3 as the Oracle Plan, serving as a plan Flow.

6



Refinement with various feedback types. Iterative refinement is a general problem-solving strategy
that is successfully deployed across various disciplines [34, 35, 39, 41]. The principle revolves around
the idea that a solution can be gradually improved through a mechanism for analysis, modification,
and re-evaluation. The design of this “feedback” mechanism is critical for the effectiveness of
the problem-solving strategy. The conceptual framework, paired with the accompanying library,
provides the infrastructure to support the design, implementation, and principled research of effective
refinement strategies and feedback mechanisms. In this work, we consider a canonical iterative
refinement pattern where a generator Flow is tasked with generating the solution, and a critic Flow
provides feedback on the proposed solution. We consider two feedback types in the context of both the
Plan and the Code Flow: (i) Reflection Flow: the feedback consists of a fixed message encouraging
the model to reflect on important aspects of the previously proposed solution; (ii) Collaboration Flow:
the feedback is provided by an AI system that “evaluates” the proposed solution. Furthermore, we
explore two more code-specific feedback types: (i) Debug Flow: the feedback message corresponds
to the results from executing the code and testing it against the examples provided in the problem
description; (ii) Debug–Collab Flow: the feedback is provided by an AI system with access to the
code testing results, effectively, grounding the feedback and allowing more systematic reasoning
about the potential causes of failure.

We refer to the Flows using the following naming convention: CodeFlowName when no plan is
generated and PlanFlowName-CodeFlowName otherwise.

4 Experimental Setup

Data. We conduct the evaluation on publicly available problems scraped from one of the most
popular websites hosting competitive coding contests, Codeforces [28], and LeetCode [22], which
covers a broad spectrum of problems ranging from easy interview questions to hard competitive
coding problems (examples are illustrated in Fig. 2). The data collection spanned problems from
2020-August-21 to 2023-March-26 for CodeForces, and from 2013-October-25 to 2023-April-09
for LeetCode. Importantly, to study the effect of structured interactions (i.e., different Flows)
in a principled manner, it is crucial to consider data contamination [27]. Existing datasets for
code evaluation like APPS [13], HumanEval [8], and CodeContests [24] lack problem release date
information, confounding the assessment of models’ memorization and generalization abilities. Our
datasets, comprising problems published over an extended time period, up to a few months ago,
rectify this issue.

Code testing and solution evaluation. Just like a human participant, the Debug Flow only has
access to the input–output example pairs provided with the problem description and, at inference time,
uses a local code testing infrastructure to evaluate (intermediate) code generations. Crucially, the
examples provided with the problem description cover only a few simple cases. Therefore, generating
outputs consistent with the examples does not imply that the generated code is correct. A solution is
considered correct if it passes all the hidden test cases.

For computing the final results, we have implemented online evaluators that submit candidate solutions
to Codeforces and LeetCode, and automatically scrape the resulting judgment. This mechanism
ensures authoritative results. The performance reported in Table 1 is based on the online evaluations
of the generated candidate solutions.

For many of the Codeforces problems, we managed to scrape a comprehensive set of hidden test
cases, which allows us to use the local infrastructure for evaluating the final solutions as well. This
enables quick development cycles with a very low number of false positives. LeetCode does not
expose any hidden test cases.

Models and Flows. We experiment with the competitive coding Flows described in Sec. 3, where the
Atomic Flows relying on an AI tool use GPT-4 [32]. The complete Flow configurations are available
in the project’s GitHub repository.

Evaluation metrics. The most common evaluation metric for code generation is pass@k, corre-
sponding to the probability that at least a single correct solution will be present in a set of k sampled
candidates [8]. To better align with practical use cases, this work focuses on pass@1, where only one
candidate solution is generated per problem, averaged over the problem set. We report a point esti-
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mate corresponding to the solve rate and a 95% confidence interval constructed from 1000 bootstrap
samples.

Compute and cost. All the experiments, including the most complex Flows, can be performed on
commodity hardware at a relatively low cost. For instance, the cost associated with querying the
OpenAI API for generating Table 1 amount to $500.

5 Experimental Results

We first study the generalization ability of a few representative Flows and empirically identify GPT-4’s
knowledge-cutoff date. Next, we perform a focused analysis along the dimensions described in
Sec. 3.

5.1 Performance of Coding Flows on Data Published Pre- vs. Post-Knowledge-Cutoff-Date
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Figure 4: Temporal analysis. Performance is averaged over a sliding window of two months.
The substantial drop in performance after the reported knowledge cutoff date for GPT-3/4 (the
crimson vertical line) reveals limited generalization ability that can be alleviated through structured
interactions.

In this experiment, we consider three representative Flows: (i) Code: the simplest Code Generator
Flow corresponding to a single GPT-4 API call; (ii) Code_Debug_Collab: the most complex code
Flow; (iii) Plan_Oracle-Code_Debug_Collab: the most complex code Flow with human guidance at
the plan level. We perform the analysis by running the three Flows on Codeforces problems ranging
from October 2020 to April 2021 and averaging the performance over a sliding window of two
months. The results are reported in Fig. 4.

We observe a substantial drop in performance centered around September 2021, which is consistent
with the knowledge-cutoff date reported by OpenAI, denoted by a vertical line on the plot. With
Codeforces problems appearing in contexts outside of the contest itself (e.g., editorials), it is reason-
able to assume that older problems are exposed to the model more frequently during training. This
would explain why the drop spans multiple months, from May 2021 to November 2021 depending on
when which data was publiched and crawled.

Notably, the results show a stark difference in performance between problems published pre- and
post-knowledge-cutoff date for the Code Flow, decreasing from around 80% to around 23%. While
still experiencing a substantial performance drop, the Code_Debug_Collab Flow doubles the solve
rate on novel problems to around 45%. When provided with human input on a plan level, the same
Flow reaches 85%.

Overall, this highlights that GPT-4 performs poorly on novel complex reasoning problems, but
structured interactions have the potential to enhance its generalization capabilities. As both GPT-4
(i.e., the Code Flow) and the more complex structured interactions (Flows) exhibit qualitatively
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different behavior on novel data, to draw accurate conclusions, it is critical that data contamination is
taken into serious consideration when designing experiments and interpreting results.

5.2 Comparing Flows

Table 1 reports the performance of the systematically chosen set of Flows described in Sec. 3.
Rows 6–10 correspond to Flows comprising planning and coding , while rows 1–5 perform the

coding directly . In line with the findings of the previous section, we separately analyze the perfor-
mance of problems published before and after the knowledge-cutoff date of September 2021.

Codeforces Leetcode
Pre-cutoff Post-cutoff Pre-cutoff Post-cutoff

Easy Medium Hard Easy Medium Hard

Code 71.8 ±11.0 26.9 ±11.0 97.8 ±3.1 93.4 ±5.4 66.7 ±10.9 76.3 ±8.6 25.1 ±8.9 8.0 ±5.5

Code_Reflection 81.1 ±9.7 26.9 ±10.6 97.8 ±3.1 93.4 ±5.4 67.9 ±10.6 77.4 ±8.1 30.5 ±9.4 11.5 ±6.6

Code_Collaboration 76.6 ±10.5 36.5 ±11.8 97.8 ±3.1 91.1 ±6.0 66.6 ±10.9 73.1 ±8.7 25.1 ±8.7 9.2 ±5.9

Code_Debug 84.5 ±8.6 34.8 ±11.6 97.8 ±3.1 94.5 ±5.0 73.6 ±10.0 84.0 ±7.3 32.8 ±9.6 10.4 ±6.3

Code_Debug_Collab 84.4 ±8.9 47.5 ±12.1 97.8 ±3.1 93.4 ±5.4 72.2 ±10.4 83.8 ±7.4 34.9 ±9.7 9.2 ±6.0

Plan-Code 70.2 ±11.0 34.9 ±11.6 94.7 ±4.5 91.1 ±5.9 57.0 ±11.2 78.6 ±8.3 28.3 ±9.1 4.6 ±4.3

Plan_Reflection-Code 68.5 ±11.6 31.7 ±11.6 95.7 ±4.1 88.9 ±6.6 63.6 ±10.7 77.5 ±8.3 21.8 ±8.5 8.0 ±5.5

Plan_Collaboration-Code 67.0 ±11.5 33.2 ±11.4 96.7 ±3.7 91.1 ±6.1 59.5 ±11.2 74.3 ±8.6 25.2 ±9.0 9.2 ±5.8

Plan_Oracle-Code 82.8 ±9.4 74.5 ±10.7 – – – – – –

Plan_Oracle-Code_
Debug_Collab 95.4 ±5.2 80.8 ±9.5 – – – – – –

Table 1: Main Results. Performance of competitive coding Flows on Codeforces and LeetCode.

Problem decomposition. The idea behind breaking down problem-solving into multiple steps is that
each step provides information that makes the problem easier to solve. Concretely, planning before
implementing the solution decouples the high-level reasoning from the code implementation. To
analyze the effectiveness of this approach we can compare two Flows: the Atomic Code Flow, which
generates code directly, and the Plan-Code Flow, which first generates a plan and then converts it into
code. Looking at the point estimates, in the pre-cutoff problems, introducing the plan Flow leads
to decreased performance (-1.6 for Codeforces and -3.1/2.3/-9.2 for LeetCode easy/medium/hard).
However, in the post-cutoff problems, incorporating a plan Flow leads to gains in Codeforces (+8)
and LeetCode easy and medium (+2.3 and +3.2). This trend reinforces the previous observations that
AI systems exhibit different behavior when exposed to familiar versus novel data. More specifically,
we hypothesize that for data potentially seen in training, the model is most effective in a context
similar to the original one, and therefore adding intermediate steps not occurring in the original
context harms performance. Finally, taking the confidence intervals into account, we see that while
these trends are consistent, they are not statistically significant. Crucially, that does not imply that
this specific problem decomposition is not valuable as it creates a lot of potential in designing an
effective human-AI collaboration.

Human-AI collaboration. After every contest, the Codeforces community publishes an editorial that,
in addition to the code implementation, provides a short natural language description of the solution.
To simulate a Flow where a human provides high-level guidance at the core of the reasoning process,
we scrape the solution descriptions and pass them as human-generated plans. The results are striking:
despite being only a few sentences long, human-provided plans lead to a substantial performance
increase (from 26.9% to 74.5%, and from 47.5% to 80.8% on novel problems when the code is
generated by Code and Code_Debug_Collab Flows, respectively). First and foremost, these results
showcase the opportunities created by Flows for designing, implementing, and studying Human-AI
collaboration as a key component of structured interactions. Second, specific to the problem of
competitive coding, they validate the hypothesis that high-quality plans are important, suggesting
that the design of more effective plan Flows is a promising direction to explore in the future. Last but
not least, the results highlight the necessity of more systematic research as patterns seemingly not
valuable in one Flow, such as the simple plan-code structured reasoning problem decomposition, can
provide immense value as part of another Flow.
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Refinement with various feedback types. We start by considering arguably the most ba-
sic form of feedback, a fixed string encouraging reflection. In the code Flows, we find that
Code_Reflection improves performance for pre-cutoff problems and has no effect otherwise. Sim-
ilarly, Code_Collaboration, in which the feedback is generated by another AI system (without
grounding), leads to limited improvements, except in Codeforces post-cutoff problems, where an
increase of +9.6 absolute points is observed. The most consistent and effective feedback relies on
grounding, achieved by executing and testing the code (such feedback is provided in the Code_Debug
and Code_Debug_Collab Flows). These improvements are most significant in the post-cutoff sce-
nario of Codeforces, where performance increases from 26.9 without feedback to 47.5 when the
refinement is based on AI-generated grounded feedback. While consistent, the improvements brought
by these two types of feedback for LeetCode problems are smaller in magnitude. We hypothesize
that this is a consequence of the examples provided in the LeetCode problem descriptions being
more simplistic than those in Codeforces. As a consequence, this would lead to false positives and,
thereby, incorrect grounding, directly affecting the quality of the feedback. This problem could be
addressed by designing a Code_Testing Flow that, in addition to the examples used as public tests,
uses a Test_Case_Generator Flow to generate additional test cases. We leave that for future work to
explore Finally, in the plan Flows, where we consider Reflection and (non-grounded) Collaboration,
we find that refinement does not lead to consistent statistically significant improvements. We can
summarize these results as follows. In their essence, LLMs are conditional probability distributions.
As refinement strategies contain the previous solution(s), used as a starting point, and feedback in
their context, it is evident that the success of the process will depend on whether the combination
of the two leads to an increased probability of a correct solution [19]. Therefore, the most useful
feedback mechanism would provide novel (“surprising”) information in the context of the generator
Flow that maximally increases the probability of a correct answer. This is why the best-performing
refinement Flow involves grounding, which surfaces concrete problems with the current solution,
paired with a Code_Feeeback Flow, which by providing concrete ideas on how to solve the specific
problems with the given solution, substantially increases the probability of a correct solution. On the
other hand, the gap between Plan_Code and Code provides evidence that the predicted plans are a
noisy starting point for refinement, which in combination with the high level of abstraction and the
lack of grounding, does not provide sufficient signal for the procedure to be effective.

Overall, our findings offer several important insights: (i) the direct benefit of problem decomposition
hinges on the quality of the intermediate steps; (ii) involving humans at the core high-level reasoning
process yields major improvements as humans can easily provide high-quality, grounded feedback.
Strategic problem decomposition is a versatile strategy for creating opportunities where the human
can be effectively incorporated as part of the Flow; (iii) the benefit from refinement depends on the
level of grounding and the “novelty” of the information the feedback mechanism provides.

This highlights the necessity for systematic research on interaction patterns and their corresponding
benefits across diverse contexts. The Flows framework and the accompanying aiFlows library
enable researchers to explore this direction.

6 Related Work

Existing libraries for modeling structured interactions. LangChain [7] has become the go-to
library for creating applications using large language models. However, most recent works involving
structured interaction, such as Cameleon [25], Camel [23], HuggingGPT [42], AutoGPT [36],
BabyAGI [30], come with their own library. We argue that the reason why researchers opt to
implement bespoke solutions is the lack of a general yet efficient abstraction for modeling structured
interactions that makes it easy to explore novel ideas. Flows with its modular design provides such
an abstraction. Indeed, in Appendix A.1 we show how all of these works are specific Flow instances.
The proposed framework makes it easy to change the structure of the interaction (the sub-Flows and
how they interact), as well as flexibly nest and reuse Flows.

Competitive coding. Solving competitive coding problems involves more than just generating code.
It requires reasoning and problem-solving abilities. Initial efforts focused on utilizing traditional
approaches such as SMT solvers and enumerative search to generate solutions [4]. With the in-
troduction of Transformers, AlphaCode [24] achieved significant progress by finetuning LLMs on
GitHub code repositories and the CodeContests dataset (scraped from Codeforces). Recently, [52]
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proposed decomposing competitive coding problems into function descriptions and, for each function
description, using an LLM to generate the implementation in a modular way. While these methods
yield promising results, competitive coding is far from being solved. Even GPT-4 struggles with
LeetCode and Codeforces problems, solving only a fraction of them[32]. Therefore, competitive
coding presents itself as a perfect testbed for testing and developing complex reasoning Flows. To
that aim, we have crated new datasets of Leetcode and Codeforces problems by scraping problems
before and after the knowledge-cutoff date of GPT-4.

7 Discussion and Conclusion

Simplicity in implementation and design. The encapsulated Flow state and the standardized
message-based interface between Flows make Flows highly modular. From the practical perspective,
as demonstrated in our experiments, this results in a substantial (i) reduction of complexity in the
design and implementation of open-ended interactions; (ii) flexibility in composing and swapping
sub-Flows, making it easy to add complexity in a controlled manner. Furthermore, FlowViz simplifies
development by offering an intuitive way to inspect Flow execution, while FlowVerse provides a
repository of Flows that can be readily used in isolation or as a starting point in developing new
Flows or extending existing ones.

Meta-reasoning Flows supporting autonomous behavior. In our experiments, we focus on the abil-
ity to design and implement Flows defining a complex but completely specified behavior. Crucially,
this ability creates unprecedented opportunities for designing, implementing, and systematically
studying higher-level, abstract, meta-reasoning patterns of interaction for AI systems. More con-
cretely, we posit that “autonomous” AI systems [30, 36] need to move beyond single-turn interaction
with an LLM as a control mechanism. Indeed, cognitive science research in metacognition and meta-
reasoning suggests the existence of meta-level processes monitoring and controlling the processes
performing the basic cognitive work [1]. The metacognitive monitoring reflects a subjective assess-
ment of the probability of success or failure in a given task at different stages of problem-solving.
Based on this signal, control processes are hypothesized to trigger different control decisions, such as
attempting a solution or allocating resources toward acquiring more information about the problem.
Exploring the development of similar mechanisms in the context of powerful AI could be a promising
area of research.

Bounded rationality and optimization. Our experiments suggest that carefully designed complex
interactions substantially improve generalization. However, this improvement comes with additional
computation and latency costs. In practice, limits on time and resources apply to both AI systems
and humans, with initial efforts in addressing the "finitary predicament" [11] problem in the scope
of metareasoning for AI tracing back to more than three decades ago [5, 17, 18, 38]. Ideally, we
would leverage the simplest Flow that could solve the task. While Flows provides the flexibility
to support pattern, learning, and optimization requires data. To support research in optimizing the
intrinsic tradeoff between the utility of execution and the time cost of deliberation, in aiFlows, we
have implemented a mechanism for detailed logging of the execution runs.

Systematic research in interaction patterns. The results of our experiments reveal that the effective-
ness of particular interaction patterns is not necessarily universal, but instead, there are many factors
at play. For instance, when designing a collaboration between a generator and a critic, one needs
to carefully reason about the information brought in the context of the generator by the feedback
from the critic (e.g., how grounded and specific it is and why it could lead to an improved solution).
As researchers, we need to clearly specify the patterns we are studying, clearly communicate our
hypotheses, and study them carefully both in isolation and as subparts of other interactions across
different datasets or/and tasks. Furthermore, it is critical that data contamination is taken into serious
consideration when designing experiments and drawing conclusions, and error bars become a standard
in the field.

Human-AI collaboration Flows. The ultimate goal is to build AI systems that can extend our
problem-solving abilities or at least make us more efficient. In the experiments, we demonstrate how
strategic problem decomposition can lead to intermediate representation around which an interface
for effective collaboration with a human can be designed such that a few sentences of input in natural
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language increase the solve rate by almost 50 absolute points. Flows provides the infrastructure that
greatly simplifies the design, implementation, and systematic study of Human-AI collaboration as a
key component of open-ended structured interactions.

On the one hand, Flows provides a high-level abstraction that enables the design and implementation
of interactions of arbitrary complexity. On the other, it provides a common framework for reasoning
about interaction patterns, specifying hypotheses, and structuring research. We hope that the frame-
work will serve as a solid basis supporting practical and theoretical innovations in AI similar to how
the Actor model has done the same for concurrent and distributed systems, paving the way toward
ever more useful AI systems and taking us a small step closer to artificial general intelligence.
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A Appendix

A.1 Concurrent and Previous Works as Specific Instances of Flows

The introduction of LLMs such as BARD, GPT-3, ChatGPT, and its latest version, GPT-4, has led
to a breakthrough in AI. This has enabled many exciting developments like CoT, HuggingGPT,
AutoGPT, AgentGPT, and BabyAGI. In this section, we demonstrate how Flows provides a unified
view encompassing concurrent and previous work as specific Flow instances. The details are provided
in Figure 5 and Table. 2.

1. Few shot Prompting (FS) [6] consists in providing a few input-output examples within
the prompt, acting as demonstrations to enable the LLM to perform a specific task. This
technique relies on the LLM’s emergent in-context learning ability to extrapolate from these
limited examples and infer how to solve the task in general.

2. Chain of Thoughts (CoT) [47] is a prompting method (atomic Flow) that allows LLMs
to generate a series of intermediate natural language reasoning steps that lead to the final
output.

3. Tree of Thoughts (ToT) [49] is a framework that enables (orchestration) exploration over
coherent units of text (thoughts) that serve as intermediate steps toward problem-solving.
ToT allows LLMs to perform deliberate decision-making by considering multiple different
reasoning paths and self-evaluating choices to decide the next course of action, as well as
looking ahead or backtracking when necessary to make global choices.

4. Program of Thoughts (PoT) [9] is a prompting method that allows language models (mainly
Codex) to express the reasoning process as a program. The computation is relegated to an
external program, which executes the generated programs to derive the answer.

5. Mutimodal CoT (M-CoT) [53] is a method that incorporates language (text) and vision
(images) modalities into a two-stage framework that separates rationale generation and
answer inference. To facilitate the interaction between modalities in M-CoT, smaller
language models (LMs) are fine-tuned by fusing multimodal features.

6. ToolFormer[40] is a model that is trained to decide which APIs to call, when to call them,
what arguments to pass, and how to incorporate the results into future tokens prediction.

7. ReAct[50] is a framework that uses LLMs to generate reasoning traces and task-specific
actions sequentially. The framework allows for greater synergy between the two: reasoning
traces help the model induce, track, and update action plans and handle exceptions, while
actions allow it to interface with external sources, such as knowledge bases or environments,
to gather additional information.

8. Parsel [52] is a framework that enables the automatic implementation and validation of
complex algorithms with code LLMs. The framework first synthesizes an intermediate
representation based on the Parsel language and can then apply a variety of postprocessing
tools. Code is generated in a next step.

9. REFINER [33] is a framework for LMs to explicitly generate intermediate reasoning steps
while interacting with a critic model that provides automated feedback on the reasoning.

10. Self-Refine [26] is a framework for LLMs to generate coherent outputs. The main idea is
that an LLM will initially generate an output while the same LLM provides feedback for its
output and uses it to refine itself iteratively.

11. Recursively Criticize and Improve (RCI) [20] showed that a pre-trained large language
model (LLM) agent could execute computer tasks guided by natural language using a simple
prompting scheme where the agent Recursively Criticizes and Improves its output (RCI).
Unlike Self-refine, this method uses two separate LLMs (ChatGPT), one for performing the
task and another for criticizing.

12. Self-Correct [48] is a framework that decouples a flawed base generator (an LLM) from
a separate corrector that learns to iteratively correct imperfect generations. The imperfect
base generator can be an off-the-self LLM or a supervised model, and the corrector model is
trained.
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Figure 5: Previous works are specific Flows. We depict a selected subset of previous works
incorporating structured reasoning and/or interactions between AI agents, tools, and humans, through
the lens of the Flows framework. This demonstrates that Flows is a powerful language for describing,
conceptualizing, and disseminating structured interaction patterns.

13. Self-Debug [10] is a framework that relies on external tools (SQL application or Python
interpreter) to help large language models revise and debug SQL commands or Python code
with bugs.

14. Reflexion[43] is a framework that provides a free-form reflection on whether a step was
executed by LLM correctly or not and potential improvements. Unlike self-refine and self-
debug, Reflexion builds a persisting memory of self-reflective experiences, which enables an
agent to identify its own errors and self-suggest lessons to learn from its mistakes over time.

15. Meta-Reasoner [51] is an approach which prompts large language models to meta-reason
over multiple chains of thought rather than aggregating their answers. This approach
included two steps: (i) ask LLM to generate multiple reasoning chains, (ii) ask another LLM
(meta-reasoner) to reason over the multiple reasoning chains to arrive at the correct answer.

16. HuggingGPT [42] is a framework that leverages LLMs (e.g., ChatGPT) to connect vari-
ous AI models in machine learning communities (e.g., Hugging Face) to solve numerous
sophisticated AI tasks in different modalities (such as language, vision, speech) and domains.

17. Camel [23] is a communicative agent framework involving inception prompting to guide
chat agents toward task completion while maintaining consistency with human intentions.

18. Chameleon [25] is a plug-and-play compositional reasoning framework that augments
external tools with LLMs in a plug-and-play manner. The core idea is that an LLM-based
planner assembles a sequence of tools to execute to generate the final response. The
assumption is that this will be less error-prone, easily expandable to new modules, and
user-friendly.

19. AutoGPT[36] is an experimental open-source application that leverages the capabilities of
large language models (LLMs) and Chatbots such as OpenAI’s GPT-4 and Chat-GPT to
create fully autonomous and customizable AI agents. It has internet access, long-term and
short-term memory management.

20. BabyAGI [30] is an intelligent agent capable of generating and attempting to execute tasks
based on a given objective. BabyAGI operates based on three LLM flows: Task creation
flow, Task prioritization flow, and Execution flow.
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Flows Flow Type Interactions Reasoning Patterns Feedback Learning

Self Multi-Ag. Human Tools Struct. Plan

FS [6] Atomic ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
CoT [47] Atomic ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗
ToT [49] Circular ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✗
PoT [9] Seq. ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
M-CoT [53] Seq. ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓
ToolFormer [47] Seq. ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓
ReAct [50] Circular ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗
Parsel [52] Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
REFINER [33] Gen-Crit ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓
Self-Refine [26] Gen-Crit ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗
RCI [20] Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Self-Correct [48] Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Self-Debug [10] Gen-Crit ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗
Reflexion [43] Gen-Crit ✓ ✗ ✗ ✓ ✗ ✗ ✓ ✗
Meta-Reasoner [51] Seq. ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
HuggingGPT [42] Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
Camel [23] Circular ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗
Chameleon [25] Seq. ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗
AutoGPT [36] Circular ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗
BabyAGI [30] Circular ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Table 2: Previous work. We compare previous work across relevant dimensions.

A.2 Prompting

We provide the prompts that were used to obtain the results in Section 5. Our evaluation is made
possible thanks to the modular and compositional nature of Flows. Some of our experimental setups
are deeply nested. We do not record all configurations and prompts, in cases where Flows build
on each other, we try to avoid repetition. For the sake of brevity, we also only show prompts used
for problems from the Codeforces dataset. A complete and exact replication of our results is made
possible by the code in the project’s GitHub repository.

Direct prompting for a solution is shown in Listing 1. To add reflection, we use a Generator-Critic
Flow to combine the code generation with a fixed reply, as shown in Listing 2. In the collaboration
setting, we use Listing 3 as the generator and Listing 4 as the critic.

Debugging is incorporated via a testing Flow that adds formatting to the output of a code executor.
The formatting templates are shown in Listing 6. To respond to the debug output, we rely on an
adjusted coding Flow 5. Adding collaboration in the debugging setting is done by introducing a critic
that provided feedback grounded on the test results. This Flow is detailed in Listing 3.

The scenarios explained above also support the addition of a planning Flow. An example of plan
generation is shown in Listing 8.

Listing 1: Prompts for Code Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o p r o v i d e e x e c u t a b l e Python code t h a t s o l v e s a

c o m p e t i t i v e programming problem . The code s h o u l d c o r r e c t l y
h a n d l e a l l c o r n e r c a s e s i n o r d e r t o p a s s t h e h id de n t e s t

c a s e s , which a r e used t o e v a l u a t e t h e c o r r e c t n e s s o f t h e
s o l u t i o n .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s
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The u s e r w i l l p r o v i d e you wi th a t a s k and an o u t p u t f o r m a t
t h a t you w i l l s t r i c t l y f o l l o w .

" query_message " : | −
# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}

# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

The i n p u t s h o u l d be r e a d from t h e s t a n d a r d i n p u t and t h e
o u t p u t s h o u l d be p a s s e d t o t h e s t a n d a r d o u t p u t .

Re tu rn Python code t h a t s o l v e s t h e problem . Reply i n t h e
f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ c o d e _ p l a c e h o l d e r }}
‘ ‘ ‘

" human_message " : | −
{{ query }}

Listing 2: Prompts for Fixed-Reply Flow
" prompt t e m p l a t e s " :

" f i x e d _ r e p l y " : | −
C o n s i d e r t h e problem s t a t e m e n t and t h e l a s t p r o p o s e d s o l u t i o n .

Are you s u r e t h a t t h e s o l u t i o n i s p r o v i d e d i n t h e
r e q u e s t e d fo rmat , and c r u c i a l l y , s o l v e s t h e problem ?

I f t h a t i s n o t t h e case , p r o v i d e t h e c o r r e c t e d v e r s i o n o f t h e
code i n t h e f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ py thon_code }}
‘ ‘ ‘
o t h e r w i s e , r e p l y :
" F i n a l answer . "

Listing 3: Prompts for Code-Collab Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o p r o v i d e e x e c u t a b l e Python code t h a t s o l v e s a

c o m p e t i t i v e programming problem . The code s h o u l d c o r r e c t l y
h a n d l e a l l c o r n e r c a s e s i n o r d e r t o p a s s t h e h id de n t e s t

c a s e s , which a r e used t o e v a l u a t e t h e c o r r e c t n e s s o f t h e
s o l u t i o n .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s

The u s e r w i l l p r o v i d e you wi th a t a s k and an o u t p u t f o r m a t
t h a t you w i l l s t r i c t l y f o l l o w .

" query_message " : | −
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# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}

# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

The i n p u t s h o u l d be r e a d from t h e s t a n d a r d i n p u t and t h e
o u t p u t s h o u l d be p a s s e d t o t h e s t a n d a r d o u t p u t .

Re tu rn Python code t h a t s o l v e s t h e problem . Reply i n t h e
f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ c o d e _ p l a c e h o l d e r }}
‘ ‘ ‘

" human_message " : | −
# Feedback on t h e l a s t p r o p o s e d s o l u t i o n
{{ c o d e _ f e e d b a c k }}

C o n s i d e r t h e o r i g i n a l problem s t a t e m e n t , t h e l a s t p r o p o s e d
s o l u t i o n and t h e p r o v i d e d f e e d b a c k . Does t h e s o l u t i o n need

t o be u p d a t e d ? I f so , p r o v i d e t h e c o r r e c t e d v e r s i o n o f
t h e code i n t h e f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ c o d e _ p l a c e h o l d e r }}
‘ ‘ ‘
o t h e r w i s e , r e p l y :
" F i n a l answer . "

Listing 4: Prompts for Code-Collab-Critic Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o i d e n t i f y p o t e n t i a l i s s u e s wi th a c o m p e t i t i v e

programming s o l u t i o n a t t e m p t .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s
− a Python s o l u t i o n a t t e m p t

C r u c i a l l y , your g o a l i s t o c o r r e c t l y i d e n t i f y p o t e n t i a l i s s u e s
wi th t h e s o l u t i o n a t t e m p t , and n o t t o p r o v i d e t h e code

i m p l e m e n t a t i o n y o u r s e l f .
The u s e r w i l l p r o v i d e you wi th a t a s k and an o u t p u t f o r m a t

t h a t you w i l l s t r i c t l y f o l l o w .
" query_message " : | −

# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}
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# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

# Python s o l u t i o n a t t e m p t :
‘ ‘ ‘ py thon
{{ code }}
‘ ‘ ‘

C o n s i d e r t h e problem s t a t e m e n t and t h e s o l u t i o n a t t e m p t . Are
t h e r e any i s s u e s wi th t h e p r o p o s e d s o l u t i o n o r i t i s
c o r r e c t ? E x p l a i n your r e a s o n i n g ve ry c o n c i s e l y , and do n o t

p r o v i d e code .
" human_message " : | −

{{ query }}

Listing 5: Prompts for Code-Debug Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o p r o v i d e e x e c u t a b l e Python code t h a t s o l v e s a

c o m p e t i t i v e programming problem . The code s h o u l d c o r r e c t l y
h a n d l e a l l c o r n e r c a s e s i n o r d e r t o p a s s t h e h id de n t e s t

c a s e s , which a r e used t o e v a l u a t e t h e c o r r e c t n e s s o f t h e
s o l u t i o n .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s

The u s e r w i l l p r o v i d e you wi th a t a s k and an o u t p u t f o r m a t
t h a t you w i l l s t r i c t l y f o l l o w .

" query_message " : | −
# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}

# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

The i n p u t s h o u l d be r e a d from t h e s t a n d a r d i n p u t and t h e
o u t p u t s h o u l d be p a s s e d t o t h e s t a n d a r d o u t p u t .

Re tu rn Python code t h a t s o l v e s t h e problem . Reply i n t h e
f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ c o d e _ p l a c e h o l d e r }}
‘ ‘ ‘

" human_message " : | −
{{ t e s t i n g _ r e s u l t s _ s u m m a r y }}
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C o n s i d e r t h e problem s t a t e m e n t , t h e l a s t p r o p o s e d s o l u t i o n ,
and i t s i s s u e . P r o v i d e a c o r r e c t e d v e r s i o n o f t h e code
t h a t s o l v e s t h e o r i g i n a l problem and r e s o l v e s t h e i s s u e ,
w i t h o u t any e x p l a n a t i o n , i n t h e f o l l o w i n g f o r m a t :

‘ ‘ ‘ py thon
{{ c o d e _ p l a c e h o l d e r }}
‘ ‘ ‘

Listing 6: Formatting templates for Code-Testing Flow (Codeforces)
" f o r m a t t i n g t e m p l a t e s " :

" no e r r o r t e m p l a t e " : | −
$ { . i s s u e _ t i t l e }
A l l o f t h e e x e c u t e d t e s t s p a s s e d .

" a l l t e s t s h e a d e r " : | −
$ { . i s s u e _ t i t l e }
The Python code does n o t s o l v e t h e problem i n t h e problem

d e s c r i p t i o n due t o l o g i c a l e r r o r s . I t f a i l s on t h e
f o l l o w i n g t e s t s .

" c o m p i l a t i o n e r r o r t e m p l a t e " : | −
$ { . i s s u e _ t i t l e }
The e x e c u t i o n r e s u l t e d i n a c o m p i l a t i o n e r r o r .
## C o m p i l a t i o n e r r o r message :
{{ e r r o r _ m e s s a g e }}

" t i m e o u t e r r o r t e m p l a t e " : | −
$ { . i s s u e _ t i t l e }
The e x e c u t i o n t imed out , t h e s o l u t i o n i s n o t e f f i c i e n t enough .

" r u n t i m e e r r o r t e m p l a t e " : | −
$ { . i s s u e _ t i t l e }
The e x e c u t i o n r e s u l t e d i n a r u n t i m e e r r o r on t h e f o l l o w i n g

t e s t .
## [ F a i l e d t e s t ] I n p u t
‘ ‘ ‘
{{ t e s t _ i n p u t }}
‘ ‘ ‘
## [ F a i l e d t e s t ] Runtime e r r o r message
{{ e r r o r _ m e s s a g e }}

" s i n g l e t e s t e r r o r " : | −
$ { . i s s u e _ t i t l e }
The Python code does n o t s o l v e t h e problem i n t h e problem

d e s c r i p t i o n due t o l o g i c a l e r r o r s . I t f a i l s t h e f o l l o w i n g
t e s t :

## [ F a i l e d t e s t ] I n p u t
‘ ‘ ‘
{{ t e s t _ i n p u t }}
‘ ‘ ‘
## [ F a i l e d t e s t ] Expec ted o u t p u t
‘ ‘ ‘
{{ e x p e c t e d _ o u t p u t }}
‘ ‘ ‘
## [ F a i l e d t e s t ] G e n e r a t e d o u t p u t
‘ ‘ ‘
{{ g e n e r a t e d _ o u t p u t }}
‘ ‘ ‘

" t e s t e r r o r " : | −
## [ F a i l e d t e s t {{ i d x } } ]
### [ F a i l e d t e s t {{ i d x } } ] I n p u t
‘ ‘ ‘
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{{ t e s t _ i n p u t }}
‘ ‘ ‘
### [ F a i l e d t e s t {{ i d x } } ] Expec ted o u t p u t
‘ ‘ ‘
{{ e x p e c t e d _ o u t p u t }}
‘ ‘ ‘
### [ F a i l e d t e s t {{ i d x } } ] G e n e r a t e d o u t p u t
‘ ‘ ‘
{{ g e n e r a t e d _ o u t p u t }}
‘ ‘ ‘

Listing 7: Prompts for Code-Debug-Collab Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o i d e n t i f y t h e i s s u e s wi th an i n c o r r e c t

c o m p e t i t i v e programming s o l u t i o n a t t e m p t .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s
− an i n c o r r e c t Python s o l u t i o n a t t e m p t and a d e s c r i p t i o n o f

i t s i s s u e

C r u c i a l l y , your g o a l i s t o c o n s i d e r a l l a s p e c t s o f t h e problem
and p i n p o i n t t h e i s s u e s wi th t h e s o l u t i o n a t t e m p t , and

n o t t o p r o v i d e t h e code i m p l e m e n t a t i o n y o u r s e l f .
Some a s p e c t s t o c o n s i d e r : I s t h e i n p u t c o r r e c t l y p a r s e d ? I s

t h e o u t p u t c o r r e c t l y f o r m a t t e d ? Are t h e c o r n e r c a s e s
c o r r e c t l y h a n d l e d ? I s t h e r e a l o g i c a l m i s t a k e wi th t h e
a l g o r i t h m i t s e l f ?

Use t h e code e x e c u t i o n r e s u l t s p r o v i d e d i n t h e i s s u e
d e s c r i p t i o n t o g u i d e your r e a s o n i n g / debugg ing .

" query_message " : | −
# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}

# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

# S o l u t i o n a t t e m p t t o be f i x e d
‘ ‘ ‘ py thon
{{ code }}
‘ ‘ ‘

{{ t e s t i n g _ r e s u l t s _ s u m m a r y }}

C o n s i d e r t h e problem s t a t e m e n t , t h e s o l u t i o n a t t e m p t and t h e
i s s u e . Why i s t h e s o l u t i o n a t t e m p t i n c o r r e c t ? How s h o u l d
i t be f i x e d ? E x p l a i n your r e a s o n i n g ve ry c o n c i s e l y , and do

n o t p r o v i d e code .
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" human_message " : | −
{{ query }}

Listing 8: Prompts for Plan Flow (Codeforces)
" prompt t e m p l a t e s " :

" sys tem_message " : | −
Your g o a l i s t o p r o v i d e a high − l e v e l c o n c e p t u a l s o l u t i o n t h a t ,

i f implemented , w i l l s o l v e a g i v e n c o m p e t i t i v e
programming problem .

The u s e r w i l l s p e c i f y t h e problem by p r o v i d i n g you wi th :
− t h e problem s t a t e m e n t
− i n p u t d e s c r i p t i o n
− o u t p u t d e s c r i p t i o n
− example t e s t c a s e s
− ( o p t i o n a l ) e x p l a n a t i o n o f t h e t e s t c a s e s

The p r o p o s e d a l g o r i t h m s h o u l d be c o m p u t a t i o n a l l y e f f i c i e n t ,
l o g i c a l l y c o r r e c t and h a n d l e a l l c o r n e r c a s e s .

The u s e r w i l l p r o v i d e you wi th a t a s k and an o u t p u t f o r m a t
t h a t you w i l l s t r i c t l y f o l l o w .

" query_message " : | −
# Problem s t a t e m e n t
{{ p r o b l e m _ d e s c r i p t i o n }}

# I n p u t d e s c r i p t i o n
{{ i n p u t _ d e s c r i p t i o n }}

# Outpu t d e s c r i p t i o n
{{ o u t p u t _ d e s c r i p t i o n }}

{{ i o _ e x a m p l e s _ a n d _ e x p l a n a t i o n }}

Re tu rn a high − l e v e l c o n c e p t u a l s o l u t i o n t h a t would s o l v e t h e
problem . Be ve ry c o n c i s e , and do n o t p r o v i d e code .

Reply i n t h e f o l l o w i n g f o r m a t :
# C o n c e p t u a l s o l u t i o n
{{ p l a n _ p l a c e h o l d e r }}

" human_message " : | −
{{ query }}

A.3 The CC-Flows-competition: a new form of competitive coding

Solving competitive coding challenges is an eminently hard problem. The solve rate of only 27%
by directly attempting the problem and 47% by the best-performing code Flow, paired with a
reliable automatic evaluation metric, make competitive programming an ideal benchmark for AI
systems. Motivated by this, we propose a competition where instead of people, proposed Flows solve
competitive programming problems.

The competition will leverage the comprehensive dataset of publicly available Codeforces problems
and the open-source infrastructure for inference and testing used in the experiments, available
at https://github.com/epfl-dlab/cc_flows. The competition will only include problems
published after the knowledge-cutoff date of GPT-4. Furthermore, not to overload the Codeforces
online evaluation infrastructure, we further filter this dataset to problems for which public and private
tests are available, and the output format is compatible with our local code testing infrastructure.
Codeforces ranks the difficulty of each problem from 800 to 2100. At the time of publishing, we have
the following number of problems per difficulty (total of 416):
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• difficulty 800: 149
• difficulty 900 to 1500 (inclusive): 185
• difficulty 1600 to 220 (inclusive): 82

We will curate a leaderboard of best-performing Flows that will be publicly available on FlowVerse
and provide the predictions that reproduce the reported scores using the provided infrastructure.
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